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Figure 1. Three explanation visualizations with increasing accuracy at the cost of increasing cognitive load. Left: Sparse Linear 

Model has lowest cognitive load but lowest accuracy; Right: GAM has highest accuracy but highest cognitive load; Middle: Cognitive-

GAM balances cognitive load and accuracy by increasing accuracy with marginal increase in cognitive load. 

ABSTRACT 

Interpretable machine learning models trade off accuracy for 

simplicity to make explanations more readable and easier to 

comprehend. Drawing from cognitive psychology theories in 

graph comprehension, we formalize readability as visual 

cognitive chunks to measure and moderate the cognitive load 

in explanation visualizations. We present Cognitive-GAM 

(COGAM) to generate explanations with desired cognitive 

load and accuracy by combining the expressive nonlinear 

generalized additive models (GAM) with simpler sparse 

linear models. We calibrated visual cognitive chunks with 

reading time in a user study, characterized the trade-off 

between cognitive load and accuracy for four datasets in 

simulation studies, and evaluated COGAM against baselines 

with users. We found that COGAM can decrease cognitive 

load without decreasing accuracy and/or increase accuracy 

without increasing cognitive load. Our framework and 

empirical measurement instruments for cognitive load will 

enable more rigorous assessment of the human 

interpretability of explainable AI. 
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INTRODUCTION 

The growing importance of Artificial Intelligence (AI) in 

society has driven calls for it to be explainable to improve 

user understanding and trust [3, 17, 22, 67]. Recent research 

in eXplainable Artificial Intelligence (XAI) has proposed 

many approaches to help users to interpret inferences from 

machine learning models [1, 65]. Techniques range from 

explaining models with linear equations of salient features 

[40, 47, 53], rules and decision trees [48, 69, 71], partial 

dependence [31], etc. Reading such explanations can help 

users to understand model predictions, but this comes at a 

cognitive cost since users will have to expend effort to 

cognitively encode and apply these explanations. To support 

this, XAI researchers typically use sparsity requirements to 

limit the number of features and complexity of the generated 

explanations [62, 73]. A popular technique, sparse linear 

models, achieves sparsity by reducing the number of salient 

features to be shown, and implies a linear relationship 

between each feature and the outcome (see Figure 1, left). 

Sparse linear models (sLM) trade off accuracy for improved 

readability and explain which features are important by their 

weights. Machine Learning (ML) researchers typically 

delegate to application developers to choose the sparsity 

level, but this is abstract and is a challenge to designers and 
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developers. Our first key insight is to formally quantify the 

cognitive load of a ML model explanation to provide a 

practical basis to set its sparsity and complexity to a desired 

readability level, based on its number of visual chunks. 

In contrast to simpler explanations, some researchers have 

focused on expressive and accurate explanations. Popular 

techniques such as partial dependence plots [21] and 

generalized additive models (GAMs) [24] convey nonlinear 

relationships between each factor independently with the 

outcome, allowing users to understand in more detail how an 

outcome will change for a different feature value (see Figure 

1, right). Our second key insight is that a single nonlinear 

relationship can be more meaningful and memorable than 

multiple linear weights, i.e., one nonlinear graph may contain 

more information than multiple linear factors without 

requiring higher cognitive load to interpret.  

Integrating our two key insights, we propose Cognitive-

GAM (COGAM) to generate explanations as a combination 

of a GAM and a sLM that balances cognitive load and 

accuracy. We extend the concept of visual chunks from 

graph comprehension [45, 70] to multiple graphs and visual 

elements. This lets us quantify cognitive load for COGAM 

visualized as a grid of nonlinear line and linear bar (lollipop) 

charts (see Figure 1, middle). In contrast to GAMs and sLMs, 

COGAM provides a range of solutions with different 

cognitive loads and accuracies. We claim that selected 

COGAM solutions can i) decrease cognitive load without 

decreasing accuracy and/or ii) increase accuracy without 

increasing cognitive load. We test these claims in simulation 

and user studies. First, we calibrated linear and nonlinear 

visual chunks to explanation reading time in a user 

experiment and confirmed our claims in a simulation study 

with four datasets. Next, we identify COGAMs that have 

improved cognitive load and accuracy compared to a full-

fledged baseline GAM and a sLM for further evaluation in a 

user study with 398 users. Thereby, we also developed novel 

interpretability measures for human simulatability [16, 35] 

that incorporate a user's mental model. Our contributions are: 

• A method to quantitatively measure the cognitive load 

of interpretable machine learning models in terms of 

visual chunks along with the calibration of linear and 

nonlinear representations to reading times. 

• An algorithmic approach to moderate cognitive load by 

regularizing GAMs to generate explanations that can 

improve cognitive load and/or accuracy. 

• Survey instruments to evaluate cognitive load and 

human simulatability in machine learning model 

explanations, and evaluation of the trade-off between 

cognitive load and accuracy of explanations. 

This work formalizes a human factor concern for 

interpretable machine learning, namely cognitive load, and 

by quantitatively defining the trade-off between cognitive 

load and accuracy, finds a range of alternative explanations.  

Our contributions enable application developers to set 

explanations for desired cognitive load levels rather than the 

more abstract sparsity or nonlinear constraints, and thus 

improve the usability of interpretable machine learning. We 

also introduce the research approach of quantifying a human 

factor requirement for eXplainable AI (XAI), supporting 

selection or optimization for the human objective, and 

evaluating with simulation and human-subjects studies. 

Researchers can apply these methods to study other human 

requirements to improve the human-centeredness of XAI. 

BACKGROUND AND RELATED WORK 

Developing human-centric XAI requires appreciating the 

capabilities and limitations of explanation interfaces, 

understanding how psychological factors constrain or bias 

user interpretation, and how to assess human perception and 

cognition to best interpret explanations.  

Sparse Linear Models and Generalized Additive Models  

Sparse Linear Models (sLMs) are very popular explanation 

models due to their interpretation as linear equations or 

weighted averages. Recently, sLMs are commonly 

visualized as a tornado plot (vertical bar chart) [34, 40, 47] 

to provide explanations of feature attribution [66]. They are 

sparse because they focus on the most important features 

(input variables) that influenced the model prediction and 

remove less important ones [15, 73]. sLMs provides a very 

simple explanation method that is not mentally demanding 

to interpret, but suffers from poor accuracy. 

In contrast, Generalized Additive Models (GAMs) [25] are 

gaining popularity due to their expressiveness to accurately 

represent the model. They have been used in healthcare [9], 

to explain black-box models [61], in explanation interfaces 

for empirical studies [4, 26] and included in recent toolkits 

to strengthen the support for using GAMs [44, 54]. GAMs 

treat each feature independently and models them 

nonlinearly with the prediction. Hence, they are visualized as 

a grid of line graphs, where each graph shows the nonlinear 

curve of how the model prediction changes with the feature. 

These are similar to partial dependence plots and can be used 

to support counterfactual reasoning [31, 41]. Each graph is 

interpretable, since the user need only read a line graph. 

However, this can be overwhelming if many features are 

included, and thus many graphs are shown.  

Identifying this contrast between sLM and GAM regarding 

readability and accuracy, we developed COGAM as a hybrid 

explanation to bridge these two approaches and benefit from 

both improved readability and improved accuracy. We next 

define readability in terms of cognitive psychology. 

Explanation insights from Cognitive Psychology 

While much research in XAI has focused on improving 

explanation faithfulness (accuracy with respect to the 

prediction model), there is an increasing push to consider 

human factors such as cognitive psychology and social 

sciences to develop more human-centric XAI [16, 35, 41, 

66]. Lombrozo et al. found that people seek explanations 

which are causal in nature [36, 41], are plausible [37] and can 

enable counterfactual reasoning. This is supported with 



contrastive (e.g., [6]) and counterfactual (e.g., [49, 64]) 

explanations. Wang et al. studied human reasoning processes 

to define an XAI framework to mitigate cognitive biases 

[66].  The framework provides design guidelines to compose 

explanations to fit users’ reasoning goals but does not 

explicitly instruct how to tune explanations for a specific 

human factor requirement. Here, we are interested to 

improve readability by reducing cognitive load. 

Defining explanation complexity in terms of semantic 

textual chunks, Narayanan et al. [43] found that increase in 

explanation complexity increases the time taken to 

understand the explanations. Our approach differs in two 

ways: 1) we propose an algorithmic approach to 

automatically generate explanations with varying cognitive 

loads while they manually tweak the textual chunks; 2) we 

model cognitive load as visual chunks and calibrate it for line 

and bar charts explanations that are relevant for sLM and 

GAM. Next, we elaborate on our approach drawn from graph 

and visualization literacy literature. 

Cognitive Load in Line and Bar Graphs Comprehension 

Given the ubiquity of graphs, much has been studied 

regarding graph comprehension to understand how users 

perceive, encode, and perform operations with graphs [28, 

58]. A user's graph comprehension depends on how well the 

user can encode the visual information and extract 

conceptual relationships [46]. This process is affected by the 

user's innate cognitive abilities and graph literacy, and the 

complexity of the information. This depends on the format 

of the graph and differs for line and bar graphs. For example, 

users frequently describe trends in line graph description 

tasks, while they describe individual outcomes for bar charts 

[57, 59]. For line graphs, factors such as the symmetry of the 

graph curve, local monotonicity and the number of trend 

reversals, influence graph comprehension times [7, 56, 70]. 

For bar graphs, the perception of height, position and bar 

separation affect their comprehension [57, 58, 60]. We draw 

on these measurable aspects of line and bar graphs to 

quantify cognitive load of visual chunks in our explanations. 

COGAM VISUALIZATION DESIGN 

Visualizations of GAM as line charts and simple linear 

model (sLM) as bar charts is typically used separately, but 

we combine them in a hybrid visual explanation to balance 

cognitive load and accuracy (see Figure 1, middle). These 

explanations visualize how features (input variables in the 

model) relate to the model’s prediction outcome. We 

designed COGAM to visualize explanations as a simplified 

GAM that is also accurate. We simplify in two ways: 1) by 

smoothing each nonlinear line graph in a GAM to be less 

“wiggly” (or curvy), to become straight lines, or even 

zeroing to remove them; and 2) by further combining all 

linear line graphs to a single bar chart. This aims to reduce 

cognitive load by reducing the number of visual chunks due 

to fewer changes in slopes in each line graph, fewer visual 

elements with bars instead of line graphs, and fewer features 

with the removal of zeroed terms. Just like a GAM, COGAM 

is a global explainer (e.g., [8, 26, 31]), so users need only 

remember one explanation that applies to any instance (use 

case), unlike instance-based explainers (e.g., [40, 47]) that 

give different explanations for each instance. Next, we 

describe how COGAM differs from GAM and sLM.  

Compared to GAM visualizations of showing line graphs in 

a grid (see Figure 1, right), COGAM is simpler and shows 

fewer line graphs where each line graph is also smoother. 

COGAM only retains the most informative (accurate) 

nonlinear relations between a feature and outcome to 

communicate trends, ranges and extremes, and help to 

facilitate comparisons between different points to support 

counterfactual reasoning [26, 33].  

In a GAM, linear relationships can be shown as line charts, 

but for a sLM, linear relationships are typically visualized 

with bar charts, such as vertical tornado plots [32, 34, 47], 

where the width or area of a bar indicates the influence or 

attribution (= 𝑤𝑖𝑥𝑖) of a feature 𝑥𝑖. A sLM takes up less 

visual space as a single bar chart than multiple line graphs. 

With COGAM we seek to use the space-savings of bar 

charts, but express the slope 𝑤𝑖  of linear line graphs, thus we 

employ lollipop charts [13]. This communicates the slope as 

a multiplication factor 𝑤𝑖  instead of an attribution and retains 

its suitability as a global explanation. Each lollipop in the 

chart has the same circle area but different position to 

represent the weight, so it is less likely to be misinterpreted 

as attribution. A more influential feature (larger 𝑤𝑖) will have 

a lollipop further from the axis, but note that its attribution 

𝑤𝑖𝑥𝑖 depends on the feature value 𝑥𝑖. Compared to the bar 

charts of sLM (see Figure 1, left), COGAM can substitute 

one or more bars to single nonlinear line graphs to 

communicate more accurate and richer relationships between 

key features and the outcome, i.e., COGAM can reduce the 

number of features in an explanation compared to sLM.  

After grouping features to be presented as line graphs (top) 

or lollipops (bottom), we further group features semantically 

to aid interpretation. In summary, COGAM visualizes 

nonlinear features using a line graph, linear features using a 

lollipop chart, and omits unimportant features. Next, we 

describe our technical approach to simplify GAM to smooth, 

linearize, or remove features. 

TECHNICAL APPROACH 

In this section, we describe how we quantify cognitive load, 

and integrate it algorithmically to develop COGAMs. We 

have two aims to manage cognitive load in machine learning 

model (ML) explanations: i) quantitatively define cognitive 

load such that it can be estimated and measured, and ii) 

model ML explanations as a hybrid combination of linear 

and nonlinear expressions that can achieve different 

cognitive load and accuracy levels.  

Cognitive Load as Visual Chunks  
Cognitive load is a measure of the amount of cognitive 

resources required for performing a mental task [28]. We 

seek to quantify cognitive load as a countable property on 



which we can develop a computational model, beyond just a 

qualitative goal that can be satisfied by iterative interaction 

design. Work in interpretable ML typically considers a data-

centric perspective that making an explanation sparser, with 

fewer data features, improves its simplicity [16]. Thus, many 

explanations are generated in terms of the number scores or 

weights, and data structures (e.g., trees, salient features, 

words, pixels). In contrast, we consider the human-centric 

perspective that considers the philosophy and psychology of 

reasoning and decision making, domain knowledge and 

expertise, human factors, visualization, UI design, usability, 

familiarity, etc. [1, 41, 65]. Specifically, we leverage on 

cognitive psychology [41, 65] to define simplicity in terms 

of cognitive load due to what a user sees and remembers. 

Since explanations are often visualized as charts, we focus 

on human understanding of line and bar charts and draw on 

research on graph comprehension and visualization literacy 

[33, 58, 59]. We describe the cognitive load for line charts, 

each bar in a bar chart, and for the combined visualization. 

Trends and Trend Reversals in Line Charts  
Based on the Gestalt principle of continuity, that people tend 

to join items into lines and anticipate trends [2, 70], Carswell 

et al. [7] modeled graph complexity in terms of trends and 

reversals. They found that graph comprehension time 

increases with the number of trend changes in a graph, with 

reversal in trends further increasing the time compared to 

slow changes in trend [7, 70]. This is because trend reversals 

create breaks in the visual perception of continuity and 

results in visual chunking of the line graph at points of trend 

reversals. Figure 2 illustrates different chunks in a line graph 

of a nonlinear relationship due to trend reversals around 

critical stationary points (minima or maxima). Hence, we 

count the number of sections separated by critical stationary 

points, i.e., 𝑛𝑐𝑠𝑝
(𝑖)

+ 1. Note that if there are no critical 

stationary points, there will be one visual chunk; this could 

be a straight line or a slightly curved line. The number of 

visual chunks in the line graph of the 𝑖th feature is  

𝑉𝐶𝑙𝑔
(𝑖)

= {
𝑉𝐶𝑛𝑙

(𝑖)
= 𝑛𝑐𝑠𝑝

(𝑖)
+ 1 , for nonlinear graph

𝑉𝐶𝑙𝑙
(𝑖)

= 𝛼 , for linear graph
 (1) 

Since users may perceive chunks in linear line graphs 

differently from nonlinear chunks (as we confirm in our 

calibration study later), we introduce the 𝛼 weighting 

parameter. Alternatively, we can represent each simple linear 

relationship as a bar in a lollipop chart. We discuss 

implications for cognitive load next. 

Countable units in Lollipop (Bar) Chart 

Since the lollipop chart is a different representation, we 

consider that each bar has a different cognitive load than a 

visual chunk in a line graph. Therefore, we denote the visual 

chunk for the linear lollipop bar of the 𝑖th feature as 

𝑉𝐶𝑙𝑏
(𝑖)

= 𝛽 (2) 

where 𝛽 is a weighted factor for the relative cognitive load 

of lollipop compared to a line graph. Note that 𝛽 > 0. 

Combined Cognitive Load in COGAM Explanation 

The total cognitive load depends on the number of features 

shown and the representation of each feature. We define the 

total cognitive load 𝐶𝐿 for a COGAM visualization as 

proportional to the sum of visual chunks due to nonlinear and 

linear lines and linear lollipop representations, i.e., 

𝐶𝐿 ∝ ∑ 𝑉𝐶𝑛𝑙
(𝑖)

𝑖∈𝑁𝐿
+ ∑ 𝑉𝐶𝑙𝑙

(𝑖)

𝑖∈𝐿𝐿
+ ∑ 𝑉𝐶𝑙𝑏

(𝑖)

𝑖∈𝐿𝐵

∝ |𝑉𝐶𝑛𝑙| + 𝛼|𝐿𝐿| + 𝛽|𝐿𝐵| 
(3) 

where 𝑉𝐶𝑛𝑙  is the set of nonlinear visual chunks, 𝑁𝐿, 𝐿𝐿 

and 𝐿𝐵 are the sets of nonlinear, linear line graph and 

lollipop chunks, respectively, and |∙| represents their counts. 

Eq (3) describes that fewer features and nonlinear chunks 

will decrease cognitive load. Note that features omitted from 

the visualization contribute no cognitive load. We assume 

that users do not spend attention to find the features.  

In summary, we model the cognitive load of a visual 

explanation by counting visual chunks based on the number 

of trend changes in line graphs Eq (1) and number of 

lollipops in a lollipop chart Eq (2). The overall cognitive load 

of the combined explanation is a weighted sum of visual 

chunks of trend changes and lollipops Eq (3). We calibrate 

the cognitive load 𝐶𝐿 to a memorization-based reading task 

time and estimate 𝛼 and 𝛽 in a calibration user study that we 

describe later. Next, we describe the technical approach to 

moderate model explanations with cognitive load. 

Cognitive Generalized Additive Model (COGAM) 

COGAM simplifies GAM by selectively smoothing 

“wiggly” curves, linearizing or removing features to reduce 

cognitive load while limiting the loss in explanation 

accuracy. In this section, we provide technical details to 1) 

describe the functional form of GAM with a regularization 

term to control for smoothness  2) discuss how sparsity 

(removing features) and partial linearity (making some 

features linear) affect accuracy and cognitive load and 3) 

describe our algorithm to find COGAM solutions using a 

greedy approach to select which features become sparse or 

linear, in addition to regularization to control for smoothness. 

Generalized Additive Model (GAM) 

Generalized Additive Model (GAM) [24] models the 

relationship between an outcome 𝑌 and features as a sum of 

shape functions of each feature. A GAM is represented as  

𝑔(𝐸(𝑌)) = 𝑓0 + ∑ 𝑓𝑖(𝑥(𝑖))
𝑑

𝑖=1
 (4) 

 
Figure 2. Four visual chunks in a nonlinear line graph separated 

by changes in trend direction at critical stationary points. 

 



where 𝑓0 is the intercept term, 𝑓𝑖 is the shape function 

modeling the nonlinear relationship between the 𝑖th feature 

𝑥(𝑖) and the outcome, and 𝑑 is the number of features. Each 

shape function, also called term fit, can be modeled as a 

spline, line, or categorical factor. Each shape function is 

often visualized with a line graph and the overall outcome is 

a simple addition of the individual partial outcome for each 

feature. Hence, GAMs are often considered to be intelligible 

[9, 26, 39] for a wide variety of applications. Each feature 

𝑥(𝑖) is treated independently, so 𝑓𝑖 does not depend on any 

other feature. Estimating a GAM involves minimizing the 

objective function over all instances 𝑗 for a given dataset. 

minimize ∑ (𝑦𝑖 − ∑ 𝑓𝑖 (𝑥𝑗
(𝑖)

)
𝑑

𝑖
)

2

+ 𝜆
𝑛

𝑗
∑ ∫ 𝑓𝑖

′′(𝑡)2 𝑑𝑡
𝑑

𝑖
 (5) 

where 𝜆 represents the weight for the regularization term to 

control the smoothness of shape functions by penalizing their 

“wiggliness” as measured by the total change in magnitude 

of  the slope. Lower 𝜆 leads to better accuracy, but wigglier 

shape functions to the data; while higher 𝜆 leads to smoother 

shape functions, but with lower accuracy. There are many 

approaches to estimating a GAM and we point the interested 

reader to Binder and Tutz [5]. 

GAM with Sparsity and Partial Linearity 

The basic GAM formulation only controls the wiggliness of 

shape functions. However, it is often desirable to set some 

shape functions to linear (partial linearity) when those 

features exhibit linear relationships or set some shape 

functions to zero (sparsity) when they are relatively poor 

predictors. As a result, recent GAM techniques such as 

GAMSEL [10] and SPLAM [38] have formulated new 

optimization objectives to induce sparsity and partial 

linearity to find one GAM solution that has the best accuracy. 

Since our focus is not just on model accuracy, but also on 

cognitive load, we fit GAMs for multiple combinations of 

sparse, linear and nonlinear term fits to get solutions with 

varying cognitive load and accuracies. Since fitting all 

possible combinations may be computationally intractable 

depending on the number of features, we use a greedy feature 

selection approach which is described next. 

Greedy Search for COGAM Solutions  

We define a COGAM solution as a GAM model trained such 

that it contains a set of features 𝐿 with linear term fits, a set 

of features 𝑁𝐿 with nonlinear term fits and a set of features 

𝑍 that are zeroed (excluded from the model), such that |𝑍| +
|𝐿| + |𝑁𝐿| = 𝑑. For each combination of term fits (e.g., 

nonlinear spline, linear line, zero), we first select active 

features ∉ 𝑍 in decreasing order of mutual information score 

between a feature and the outcome (i.e., how well a feature 

predicts the outcome). Features with lowest scores are zeroed 

first. For the features that are active, we select which features 

are modelled as linear lines based on decreasing order of the 

R2 score between each feature and the outcome (i.e., higher 

R2 suggests a more linear relationship). The remaining 

features are modelled as nonlinear splines. We estimate the 

GAM at each combination of term fits using Penalized 

Iteratively Reweighted Least Squares [68] with an L2 

penalty on the mean square error (MSE) to regularize linear 

features and a penalty on the second derivative of the shape 

function  𝑓′′ to regularize nonlinear features. While iterating 

over the combination of term fits, as the number of active 

terms in a model decreases and/or as more features are made 

linear, the spline fit for nonlinear features can become 

wigglier. This is because they tend to overfit to make up for 

the loss of accuracy because of the features that were 

excluded or made linear. To mitigate this overfitting, we 

progressively increase the lower bound of the 𝜆 search grid 

based on the best 𝜆 selected at the previous iteration step. The 

pseudocode for the algorithm is provided in the 

supplementary material.  

Note that since the combinations of nonlinear, linear, and 

zero term fits are discrete and the degree of nonlinearity of 

the the features are dependent on the dataset, there may be 

no COGAM solutions that have high accuracy and low 

cognitive load. We carefully study their distribution in a 

simulation study described in the next section. 

SIMULATION STUDY ON COGNITIVE LOAD ACCURACY 
TRADE-OFF WITH FOUR DATASETS 

Since COGAM finds many explanation models with varying 

cognitive load - accuracy trade-offs, we conducted a 

simulation study to characterize the COGAM solutions 

across four diverse datasets (Boston Housing [23], Ames 

Housing [11], Concrete Strength [72], and Wine Quality 

[12]). We selected regression problems (predicting 

continuous numeric values) instead of classification, since 

and they are easier for users to reason with when viewing 

line graphs and to give most flexibility to our analysis. For 

each explanation model, we calculate accuracy as the R2 

score on a held-out (excluded from training) test dataset that 

indicates how well the explainer’s prediction matches the 

true value. We calculate cognitive load as described in Eq(3). 

For simplicity, we excluded categorical features, because 

they would be one-hot encoded or discretized (splitting an 𝑛-

level categorical variable into 𝑛 binary 0 or 1 variables), 

which is equivalent to assigning each value to a lollipop bar.  

Figure 3 compares the visual chunk (top) and calibrated 

cognitive load (bottom) with accuracy of different 

explanation models and illustrates the spread of COGAM 

solutions that trade off cognitive load and accuracy 

variously. More accurate models are towards the right and 

simpler models are towards the bottom. Explanations with 

the best characteristics — low cognitive load and high 

accuracy — are towards the bottom-right of the graphs. In 

general, as the accuracy increases so does the number of 

visual chunks (diagonal trend with positive correlation), 

because COGAM can take advantage of the inherent sparsity 

and partial linearity in the dataset to find solutions with lower 

number of visual chunks.  As expected, we found that GAMs 

have higher accuracy than (sparse) linear models (sLM & 

LM) but also higher cognitive load. We expect COGAM 



solutions to mainly fall in between these points of reference. 

For some datasets, COGAMs compromise accuracy for 

cognitive load (diagonal trend interpolated between sLM and 

GAM, e.g., in Figure 3c); for others, remarkably, COGAMs 

can have both high accuracy and high cognitive load, i.e., 

accuracy as high as GAM and cognitive load as low as sLM 

(reversed “L” shape of plots in Figure 3a, d). Curiously, for 

the Ames Housing dataset (Figure 3b), sLM accuracy is 

slightly higher than GAM; this suggests that many features 

are naturally linear in relation to the outcome. Furthermore, 

some COGAM explanations have lower cognitive load at 

similar accuracy than sLM; this suggests some features in 

sLM were accommodated by fewer nonlinear functions. We 

verified these by looking at the COGAM visualizations. 

 After examining the spread of COGAMs, we can select one 

solution that has the best trade-off for cognitive load and 

accuracy. We highlight two regions of interest in which 

selecting a COGAM can provide better cognitive load and 

accuracy than either GAM or sLM: 

• R1) Any COGAM here will have the same or higher 

accuracy, but no higher cognitive load, than sLM. 

• R2) Any COGAM here will have the same or lower 

cognitive load, but no lower accuracy than the GAM.  

Ideally, a good choice of COGAM will be in the region 

overlapped by R1 and R2, but such an explanation model 

may not exist, selecting a viable explanation nearby is 

reasonable. We also plot GAMSEL among COGAMs for 

reference, since it also optimizes for sparsity and smoothness 

with accuracy. However, since GAMSEL does not explicitly 

model cognitive load, it does not necessarily produce an 

explanation that best balances cognitive load and accuracy.  

In summary, we found that GAMs have higher accuracy but 

higher cognitive load than sLM, and that there are many 

COGAMs with intermediate accuracy and cognitive load. 

Depending on dataset, COGAM can find explanations that 

reduce cognitive load by compromising acuracy, and find 

explanations that have cognitive load comparable to sLM 

and accuracy comparable to GAM. These theoretical results 

are based on real data, and we further validate the findings 

and benefits with calibration and user evaluation studies.  

EVALUATING COGAM READABILITY AND USEFULNESS 

We evaluate COGAM in two steps. First we calibrate the 

cognitive load of a COGAM to the time taken by a user to 

read its visual explanation by testing multiple COGAM 

solutions with different number and types of visual chunks. 

Second, we use the calibrated cognitive load to select one 

COGAM (see green dot Boston Housing Figure 3e) and 

evaluate it against baselines sLM and GAM in terms of 

cognitive load (to interpret the explanations) and human 

simulatability (measuring human understanding of machine 

learning model explanations). The calibration and 

comparison studies share many common details such as the 

dataset (Boston Housing), between-subjects design, survey 

instruments, and statistical analysis methods to retain 

internal validity. We performed two iterations of pilot testing 

with HCI researchers and on MTurk which resulted in 

clarification of instructions, adding controls, simplified UI 

and reduction of questions per task. Next, we describe the 

final experiment method, procedure, design, and results. 

Experiment Method: User Tasks and Survey Instruments 

A user is required to study an explanation visualization about 

a machine learning (ML) model, specifically, housing price 

prediction on the Boston Housing dataset and demonstrate 

their understanding through human simulatability tasks. We 

implemented survey questions and usage log instruments to 

measure and control factors affecting the users' ability to 

read, understand, and apply the visual explanations. Next, we 

describe experiment tests and tasks. 

Visual Literacy Assessment Tests (VLAT). As discussed in 

related work on graph comprehension theories, the reading 

time for a graph depends on the number of visual chunks. 

However, it is also confounded with the user’s graph and 

visualization literacy; poorer literacy would lead to longer 

reading time. Hence, we extend VLAT that tests literacy on 

 

Figure 3. Simulation results on four datasets showing the trade-off between cognitive load (top: as number of visual chunks; bottom: 

as calibrated reading time) and accuracy (regression R2) for different explanation models. Each COGAM is denoted by a blue dot. 

Baselines LM, sLM, GAM and GAMSEL are denoted by red dots. We selected the COGAM denoted by the green dot (e) for the user study. 

 



interpretation tasks of various visualizations [33] to multi-

chart interfaces with line and lollipop charts by including 

questions about multiple chart comparisons and multivariate 

counterfactual reasoning, which are relevant human 

simulatability tasks for XAI models [16, 41].  

Memory Tests. Since a COGAM explanation visualization 

contains multiple line and bar charts, the time to read or 

memorize the charts may depend on the user’s memory 

capacity to remember a span of items and visual spatial 

ability to remember shapes in individual line charts. Hence, 

we use the Digit Span Test and Visual Pattern Test that 

measure the person’s verbal and visual-spatial memory 

capacity, respectively [14, 50].  

Reading and Memorization Task. This is the key task to 

measure the user’s cognitive load to read and study the 

explanation to a nontrivial level of understanding. We prime 

the user to study (and memorize) the visualization and warn 

that it would not be shown when answering subsequent 

questions. This approach is similar to prior graph 

comprehension studies that had participants memorize single 

charts to draw them from memory later [7]. Our task is 

notably more challenging, since users must study multiple 

charts. The amount of time spent on this page before clicking 

next is recorded as the reading time. The user is then asked 

to rate the mental effort to read the visualization on a 7-point 

Likert scale on the next page [51]. 

Recall Task. This measures how well users can retrieve, from 

memory, details of feature-outcome relationships visualized 

in the explanation without any prompts. It involves the user, 

from memory, drawing each nonlinear relationship on an 

empty line chart canvas, and specifying the multiplier 

influence of each linear feature.  

Recognition Task. This measures a user's ability to recognize 

a feature when they are shown a chart drawing indicating the 

feature-outcome relationship (without label). It involves 

matching the correct feature names to line graph or lollipop 

charts indicating the feature-outcome relationship. 

Description Task. Users see their recalled drawings or 

multiplier influence values and describe the relationship 

between the feature and outcome. This provides contextual 

information to help us to understand which characteristics of 

each chart is salient or memorable. 

Counterfactual Task. Users get to view the explanation 

visualization again and answer multiple questions of the 

type, "If Factor 𝑋 changes from 𝑎 to 𝑏, then by how much 

does the Outcome increase (or decrease)?" These questions 

measure the user’s ability to apply the explanations to new 

situations. They require deeper understanding than the 

common approach of reading explanations to simulate the 

outcome of a one input value [16, 43]. 

Post Survey Questionnaire. Using Likert scale and free text 

questions, this asks about overall ease of use and helpfulness 

of the explanation as well as the charts for specific features. 

Procedure 

Each participant in any given condition was exposed to only 

one explanation visualization. In the calibration study, one 

explanation visualization has a fixed number and types of 

visual chunks, whereas for the comparison study an 

explanation visualization is generated from the selected 

COGAM or GAM, sLM. All participants went through the 

following procedure.  

1. Introduction and accepting consent form. 

2. Tutorial to give a refresher on reading line and bar 

(lollipop) charts and comprehension test (adapted VLAT 

[33]). Participants who scored ≥80% qualify to continue.  

3. Memory tests starting with digit span test from 3 digits 

up to 9, followed by visual patterns test from 3×3 grid, 

3×4, and so on, up to 5×5. Users continue to the main 

survey regardless of levels achieved. 

4. Reading and memorization task. 

5. Recall task, as first task to reduce forgetting. 

6. Recognition task, after recall to avoid priming. 

7. Counterfactual task, along with explanation visualization 

being shown again. 

8. Post survey questionnaire. 

Since asking about all features in any explanation can lead to 

user fatigue, we limit questions on tasks 4 through 7 to four 

features. The four features were selected from the 

explanation such that two were fixed across all treatment 

conditions, and the remaining were randomly selected where 

one was nonlinear and the other linear where applicable. This 

avoids biasing results based on the features being tested.  

Measures for Cognitive Load 

In addition to reading timing and the self-reported perceived 

load, we assess cognitive load with memory performance, 

i.e., how well the user remembers the explanation. Better 

memory scores indicate lower cognitive load, since the user 

can retain more information about the explanation, given the 

same reading time. We score memory based on measuring 

the user’s mental model (recall reconstruction) and 

recognition performance. 

Recall Reconstruction Score 

We seek to capture how accurately users recall the 

relationships in the explanations that they saw. Ideally, a 

suitable metric would be compatible for both line chart 

drawings and slider displacements for the lollipop bars. 

However, potential methods like relative difference depend 

on the user’s and the explanation’s absolute values, and this 

will be difficult to scale for these different representations.  

Instead, we reconstruct the explanation from the user’s 

drawing and lollipop positioning as a “mental” model in the 

format of GAM, COGAM, or sLM, but with different 

parameters. To do this, we reconstruct shape functions based 

on the users recalled linear and nonlinear relationships. To 

reconstruct the shape function for a line graph, we perform a 

univariate spline interpolation. To reconstruct the effect of a 

lollipop graph, we add a linear term weighted by the user 

recalled multiplier influence. This model can be considered 

as “trained” from the user’s belief and memory recall, and 



can be used similarly as the explainer model to infer 

outcomes from instance data. Hence, we use a held-out test 

set over which we compute the user's partial predictions.  

Note that, since the models are additive, we can treat the 

prediction as if the rest of the features were missing.  

Finally, to determine how well the user’s mental model 

matches the shown explanation model, we compute the R2 

score between the user's mental model partial predictions and 

the partial predictions of the explainer model. The recall 

reconstruction is this R2 score between the user and 

explainer. Note that this is similar to human simulatability in 

interpretable machine learning [16, 35] that seeks to measure 

the similarity between the user’s and explainer’s inference, 

but those works do not compute a user’s mental model. 

Recognition Score 

The recognition score measures how well the user can 

correctly recognize and associate the name of a feature and 

its shape as seen in a chart or its multiplier influence seen in 

a lollipop bar. This is a binary score of 1 for every correct 

match, and the sum is the total Recognition score. 

Measures for Mental Model Faithfulness (Accuracy) 

We seek to access how accurately the user’s mental model 

can be applied to new situations. In interpretable ML, 

explanation model faithfulness is defined as the similarity in 

prediction between the explainer and predictor or ground 

truth. Here, we define mental model faithfulness as the 

similarity in prediction between the user’s mental model and 

predictor or ground truth. Therefore, mental model 

faithfulness increases if the user better understands how the 

predictive model or ground truth phenomenon works. We 

compute mental model faithfulness in terms of 

counterfactual performance and recall faithfulness.  

Counterfactual Performance 

We measure counterfactual performance as the relative 

difference between the user’s answer and the model. In 

addition to measuring how accurate the answers are, we also 

time the counterfactual question for each feature tested to 

assess the difficulty of reading the explanation. 

Recall Faithfulness 

To compute recall faithfulness, we leverage on most of the 

method to compute recall reconstruction. However, instead 

of comparing the user’s mental model with the explainer 

model, we compare the user’s mental model with the ground 

truth labels. This measures how similar to the ground truth 

the user could predict. Therefore, the recall faithfulness is 

this R2 score between the user and ground truth.  

Pre-Study: Calibrating Cognitive Load 

Since COGAM employs two different visualization elements 

(line charts and lollipop bars), the measured cognitive load 

may differ between the types of visual chunks Eq (3). Hence, 

we conducted a study to calibrate their respective cognitive 

loads. Although we define cognitive load in terms of visual 

chunks, it is typically measured subjectively from survey 

questions (e.g., Paas scale [51]), or objectively using sensors 

(e.g., electrodermal activity, EEG) or with task performance 

time. We chose to calibrate against time taken to read or 

memorize a visual explanation with different visual chunks, 

since it is an objective measure and we can measure this with 

an instrumented online study without expensive sensor 

equipment. We study the cognitive load for multiple variants 

of COGAM to provide many readings across a range of 

visual chunk combinations for a more accurate estimation. 

Treatment Conditions. Each participant viewed one of 27 

variants of COGAM based on three independent variables:  

the number of non-zeroed features (3 levels: 4, 8, 12) and the 

percentage of features that are nonlinear (5 levels: 0, 25, 50, 

75, 100%), and representation of linear features (2 levels: 

straight line in a graph or lollipop bar). The latter two 

independent variables enable us to calibrate 𝛼, 𝛽 in Eq (3). 

Participants. We recruited participants from Amazon 

Mechanical Turk. To ensure reliable results, we targeted 

workers with high qualifications (>5000 completed HITs 

with >97% approval rate). Participants were compensated 

US$2.50 and completed the survey in about 30 to 40 minutes. 

While 1318 participants attempted the survey, only 305 (151 

Female, average age 39) participants passed the screening. 

We discuss implications of our strong screening later.  

Calibrating Visual Chunks with Cognitive Load Time 

Our calibration study results verify that the reading time for 

explanation increases with the number of line graphs and the 

complexity of the nonlinear relationships. We fit a 

multivariate linear model (𝑅2 = 0.34, 𝑅𝑎𝑑𝑗
2 = 0.30) with a 

log transform of the cognitive load time l𝑜𝑔 (𝑡𝐶𝐿)  as 

dependent variable; number of nonlinear/linear line graphs 
|𝑁𝐿|, |𝐿𝐿| , total number of nonlinear visual chunks |𝑉𝐶𝑛𝑙|, 
and number of lollipop bars |𝐿𝐵| as independent variables; 

and participant age and Recall accuracy as control variables:  

log (𝑡𝐶𝐿) = 𝑤1|𝑁𝐿| + 𝑤2|𝑉𝐶𝑛𝑙| + 𝑤3|𝐿𝐿| + 𝑤4|𝐿𝐵| + 𝜀 (6) 

where 𝑤1 = 0.385, 𝑤2 = −0.073, 𝑤3 = 0.071, 𝑤4 =
0.049, 𝜀 represents terms from control variables and 

intercept. All IVs were very significant (p<.01) and CVs 

were significant (p<.05). In our calibration study, we had a 

mostly fixed number of nonlinear visual chunks for the 

number of nonlinear line graphs, so we substitute with 
|𝑁𝐿| = 𝜅|𝑉𝐶𝑛𝑙| where 𝜅 = 0.293 is estimated from a linear 

regression (p<.0001). Formatting Eq (6) as in Eq (3), we get  

log (𝑡𝐶𝐿) = 0.039|𝑁𝐿| + 0.071 |𝐿𝐿| + 0.048 |𝐿𝐵| + 𝜀 (7) 

Interestingly, the cognitive load due to nonlinear chunks is 

lower than for linear chunks in line graphs; this suggests that 

users mentally process multiple nonlinear chunks in batches. 

Normalizing Eq (7), we calibrate parameters in Eq (3) as 𝛼 =
1.83, 𝛽 = 0.686. Since 𝛽 < 𝛼, this means lollipop chunks 

are faster to read than linear line graphs, validating our 

choice to visualize linear relationships with lollipop bars. 

Using our calibration result, we can estimate the cognitive 

load for different COGAMs for different datasets (see Figure 



3, bottom) to help us select a COGAM for a desired cognitive 

load level. Next, we evaluate how a carefully chosen 

COGAM can help users more accurately understand the 

model performance without much increase in cognitive load, 

compared to sLM and GAM baselines. 

Main Study: Comparing COGAM vs baselines  

We evaluate how theoretical improvements calculated from 

COGAM leads to measurable decrease in cognitive load and 

increase in mental model understanding compared to 

baseline models sLM and GAM. As mentioned earlier, all 

models are trained on the Boston Housing dataset to predict 

housing prices based on 12 features (see Figure 1). This is an 

intuitive lay problem to simplify the task for participants. We 

chose a COGAM (see green dot in Figure 3e) that has 

comparable accuracy to GAM and comparable cognitive 

load to sLM to evaluate the best circumstances for COGAM. 

This COGAM implements linear terms as lollipops. Based 

on our simulation results, we hypothesize that users will 

experience cognitive load in the following order: sLM ≤ 

COGAM < GAM (H1); and understand the model prediction 

in the following order: sLM < COGAM ≤ GAM (H2). 

Treatment Conditions. We presented each participant with 

one of three explanations (3 levels: sLM, COGAM, GAM). 

Participants. We recruited participants from MTurk with the 

same requirements as the calibration study. 1858 participants 

attempted the survey but only 398 participants (201 female, 

average age 38) passed the VLAT screening test. The low 

pass rate ensures participants were sufficiently skilled for the 

interpretation tasks. Though there is a risk for cognitive 

saturation, our pilot testing iteration and ultimate high ratings 

(>4) for Ease of Understanding (Figure 3b) suggest this was 

unlikely. Participants were reimbursed US$2.50. There were 

130 sLM, 131 COGAM, and 120 GAM participants. 

Analysis and Findings  

We fit a linear mixed effects models on each of the 

aforementioned dependent variables with Model type as 

fixed effect. We found significant (p<.001) fixed effects for 

Log(Reading Time), Ease of Understanding, Recall and 

Counterfactual scores. We performed post-hoc Tukey HSD 

testing with Bonferroni correction (at α=.005) to identify 

specific differences. Figure 4 shows significant results for 

key dependent variables. Next, we discuss specific findings 

and supplement with qualitative participant comments.  

COGAM is faster to read and more memorable than GAM 

and is similar to sLM. A Tukey HSD test on Log(Reading 

Time) found that (sLM=COGAM) <GAM, p=.0043. 

However, there was no significant effect on Self-reported 

Cognitive Load (M=5.77), perhaps because participants 

found all explanations somewhat demanding to study 

(ceiling effect) due to seldom reading charts, and not be able 

to compare explanations relatively within-subjects. A Tukey 

HSD test on Recall Reconstruction (higher is better) found 

that (sLM = COGAM) > GAM, p<.0001. Some participants 

struggled to remember GAMs due to their high number of 

line graphs with nonlinear terms, e.g., “Some factors were 

hard to remember because they didn't seem much different 

from random noise. There was no trend in student-teacher 

ratio from what I remembered.” [P39], and because recalling 

is much harder than reading, e.g., “… the charts were easy 

to understand when I was looking at them...but when I wasn't 

it was so hard for me. I felt really disadvantaged when I was 

having to remember the charts.” [P66]. There was no 

significant effect on Recognition scores which were equally 

high for all explanations (M=3.16/4), indicating that 

recognizing explanations is much easier than recalling them.  

Visualizing sLM as Lollipop bar charts does not provide as 

accurately useful explanations and is surprisingly hard to 

understand compared to GAMs. Since COGAM is a mix of 

the two, its ease of understanding and usefulness for 

counterfactual reasoning are in between. A Tukey HSD test 

on Counterfactual difference (lower is better) found that 

sLM>COGAM>GAM, p<.0001, in agreement with H2. 

Furthermore, a Tukey HSD test on Ease of Understanding 

found (sLM=COGAM)>GAM, p<.0001. This suggests that 

there could be more than the lack of expressiveness of sLM 

that impedes the users’ mental model faithfulness. As 

expected, users could easily identify which features were 

important with sLM, “Seeing the lines [bars] made it more 

intuitive to understand how the factors influenced the price 

and seeing the length of the lines gave a greater impression 

of the magnitude of that influence” [P259].  However, some 

users found it difficult to mentally compute counterfactuals 

from lollipop charts for e.g., P121 who used COGAM felt 

that “the multipliers relied on me doing a large portion of 

the math and did not have enough information to really 

figure it out”. This was exacerbated with negative weights: 

“The negative values on the bar charts were somewhat 

confusing because by "increasing" meant an increase in the 

negative direction” [P119]. In contrast, some users found 

GAMs easier to use for the counterfactual task, e.g., “I think 

that the line charts were easier for me to understand, 

 
Figure 4. Comparison results showing how COGAM imposes 

intermediate cognitive load (a, b, c) and supports intermediate 

mental model faithfulness (d) with respect to sLM and GAM.  

 



because I felt like I could find outcome changes easier. I was 

able to see the trend going up or down easier and understand 

it better” [P176], “The line charts were easy to understand.  

They clearly show how a home value is affected by the 

factor” [P127]. Given the need of explanations for 

counterfactual reasoning [41], our results highlight the 

importance of employing line graphs as the appropriate 

representation, instead of the common bar charts. 

In summary, our comparison study found that users could a) 

read COGAM as quickly as sLM, b) found it as easy to 

understand as sLM, and c) could recall the explanation of 

COGAM as well as sLM, but d) had counterfactual 

understanding in-between sLM and GAM. Surprisingly, 

sLM was least easy to understand subjectively and 

objectively for deeper counterfactual reasoning. 

DESIGN IMPLICATIONS AND FUTURE WORK 

We have developed COGAM to moderate cognitive load in 

explainable AI as visual chunks, which goes beyond only 

considering the sparsity and faithfulness of explanations. We 

discuss how our methods and results open opportunities for 

further research in studying various human factors for XAI.  

Moderating cognitive load can maintain user’s learned 

mental model from explanations. Our results show that 

quantifying cognitive load to moderately reduce it in 

explanations helps users to better understand the model and 

its predictions. Explanations with lower cognitive load 

improve the accuracy of the user’s mental model reflected in 

improved recall and shorter reading times. This indicates that 

simplifying explanations to manage cognitive load does not 

necessarily reduce the knowledge gained about the model 

when users read the explanations. 

Math and visual literacy requirements for XAI. Our rigorous 

graph literacy tests with low pass rate suggests most lay users 

are not sufficiently qualified to effectively interpret model 

explanations. We target early AI users who are typically 

more tech savvy and more likely to pass our VLAT test. 

Some users had difficulty to apply lollipop (bar) charts for 

counterfactual reasoning. Thus, there is a strong need to 

simplify explanations for lay users. Less technical 

explanations (e.g. simple text) could be provided which 

reduces selection bias, but this may compromise accuracy. 

Tunable explanations for varying trade-offs. Our design of 

COGAM mixed two explanation representations, simple 

linear model and GAMs, that are typically considered 

separately. By introducing a tuning parameter for their 

combination, COGAM considers a spectrum between linear 

and nonlinear explanations and enables tunable explanations 

to trade off between cognitive load and accuracy. This 

provides more flexibility for XAI developers to tune their 

explanation complexity based on the domain requirements. 

For example, music listeners may prefer simpler but less 

accurate explanations for automatic song recommendations, 

while medical doctors may require more detailed and 

accurate explanations with higher cognitive load for an AI-

assisted medical decision-making task. In general, with our 

hybrid and tunable approach, explanations can be explored 

on a continuum instead of limited binary or discrete 

alternatives. Other trade-offs to study include privacy-

interpretability, plausibility-faithfulness, etc. 

Generalizing to other sources of cognitive load in XAI. In our 

study of moderating and measuring cognitive load, we 

focused on visual explanations to allow us to formally define 

cognitive load in terms of quantifiable visual chunks. We 

studied simple GAM visualizations with line charts, but 

GAM can also include confidence bands. This adds two more 

lines, which will increase cognitive load due to perceiving 

more chunks and reasoning with uncertainty.  GA2M [9] is 

an extension of GAM that visualizes using interaction plots 

with colored saliency heatmaps; modeling cognitive load for 

this has to consider perception of 2D areas and small color 

differences. Furthermore, while visual explanations are 

widely used [29, 40, 42, 47], there is growing interest in 

verbal explanations using text [18, 27, 55].  Our formal 

approach can be extended to other explanation modalities, 

such as text by drawing from text comprehension theories 

[19, 30, 52] to quantify textual chunks based on sentence or 

semantic boundaries and incorporate appropriate controls 

such as the Verbal Ability Test and Verbal Span Test.  

Theory-driven integration of human factors in XAI. Our 

grounding in cognitive psychology with visual chunks 

allowed us to parameterize, optimize, calibrate and measure 

cognitive load in explanations of AI. This is an example of 

drawing from understanding human reasoning to inform XAI 

design [65]. First, by identifying a human factor or usability 

issue (in our case, cognitive load) and studying its constituent 

components as relevant to explanations (graph and visual 

chunks), we can explicitly model a new requirement for XAI. 

Second, our explicit mathematical definition allowed us to 

objectively simulate the outcome of providing for the new 

requirement. Third, beyond using standard measures of 

explanation effectiveness, we define new measures to 

specifically evaluate explanations with respect to the 

targeted explanation quality (in our case, cognitive load). 

Our three-step method – 1) mathematical modeling, 2) 

simulation and 3) evaluation with users – provides a 

theoretical framework to help researchers to develop and 

evaluate human-centric XAI. Our method can be applied to 

other factors, such as, plausibility, memorability [20, 37, 63]. 

CONCLUSION 

Explanations with lower cognitive load help users form more 

accurate mental models. We formalize cognitive load for 

XAI with visual chunks and present Cognitive-GAM 

(COGAM) to generate explanations for desired cognitive 

load and accuracy. Specifically, we combine the expressive 

nonlinear generalized additive models (GAM) with simpler 

sparse linear models, and moderate sparsity and nonlinearity. 

In doing so, we characterize the trade-off between cognitive 

load and accuracy, and find that COGAM improves 

cognitive load without sacrificing accuracy and vice versa. 
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