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ABSTRACT 

From healthcare to criminal justice, artificial intelligence 
(AI) is increasingly supporting high-consequence human 
decisions. This has spurred the field of explainable AI (XAI). 
This paper seeks to strengthen empirical application-
specific investigations of XAI by exploring theoretical 
underpinnings of human decision making, drawing from 
the fields of philosophy and psychology. In this paper, we 
propose a conceptual framework for building human-
centered, decision-theory-driven XAI based on an 
extensive review across these fields. Drawing on this 
framework, we identify pathways along which human 
cognitive patterns drives needs for building XAI and how 
XAI can mitigate common cognitive biases. We then put 
this framework into practice by designing and 
implementing an explainable clinical diagnostic tool for 
intensive care phenotyping and conducting a co-design 
exercise with clinicians. Thereafter, we draw insights into 
how this framework bridges algorithm-generated 
explanations and human decision-making theories. Finally, 
we discuss implications for XAI design and development.  
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1 INTRODUCTION 

From supporting healthcare intervention decisions to 
informing criminal justice, artificial intelligence (AI) is now 
increasingly entering the mainstream and supporting high-
consequence human decisions. However, the effectiveness 
of these systems will be limited by the machine’s inability 
to explain its thoughts and actions to human users in these 
critical situations. These challenges have spurred research 
interest in explainable AI (XAI) [2, 12, 32, 43, 109]. To 
enable end users to understand, trust, and effectively 
manage their intelligent partners, HCI and AI researchers 
have produced many user-centered, innovative algorithm 
visualizations, interfaces and toolkits (e.g., [18, 56, 67, 86] 
that support users with various levels of AI literacy in 
diverse subject domains, from the bank customer who is 
refused a loan, the doctor making a diagnosis with a 
decision aid, to the patient who learns that he may have 
skin cancer from a smartphone photograph of his mole 
[30].   

Adding on to this line of inquiry, this paper seeks to 
strengthen empirical application-specific investigations of 
XAI by exploring theoretical underpinnings of human 
decision making, drawing from the fields of philosophy and 
psychology. We first conducted an extensive literature 
review in cognitive psychology, philosophy and decision-
making theories that describe patterns of how people 
reason, make decisions and seek explanations, and 
cognitive factors that bias or compromise decision-making. 
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Figure 1. Overview of user-centric XAI framework. 
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We drew connections between these insights and 
explanation facilities that AI algorithms commonly 
produce, and in turn proposed a theory-driven, user-centric 
XAI framework (Figure 1). With this framework, XAI 
researchers and designers can identify pathways along 
which human cognitive patterns drive needs for building 
XAI and how XAI can mitigate common cognitive biases. 
Next, to evaluate this framework by putting it to work, we 
applied it to a real-world clinical machine learning (ML) use 
case, i.e., an explainable diagnostic tool for intensive care 
phenotyping. Co-designing with 14 clinicians, we 
developed five explanation strategies to mitigate decision 
biases and moderate trust. We implemented the system 
with XGBoost [17] trained on the MIMIC III data [45]. 
Drawing on this application, we reflect on the utility and 
limitations of the framework and share lessons learned. 
Our contributions are: 

1. A theory-driven conceptual framework linking different 
XAI explanation facilities to user reasoning goals which 
provides pathways to mitigate reasoning failures due to 
cognitive biases.  

2. An application of our framework to medical decision 
making to demonstrate its usefulness in designing user-
centric XAI.   

3. Discussion to generalize our framework to other 
applications.  

The key takeaway of the framework is to choose 
explanations backed by reasoning theories and cognitive 
biases rather than based on taxonomy (e.g., [32, 38, 66, 90, 
93]) or popular XAI techniques (e.g. [75, 86]). This aims to 
help developers build human-centric explainable AI-based 
systems with targeted XAI features. 

2 BACKGROUND AND RELATED WORK 

Research on explainable AI has recently been burgeoning 
with many algorithmic approaches being developed in AI 
and many empirical studies on the impact of explanations 
in HCI. We refer the interested reader to several literature 
reviews [2, 12, 32, 43, 109]. We identified three approaches 
from prior literature and describe how our framework 
extends the explanation research landscape  

1) Unvalidated guidelines for design and evaluation 
based on authors’ respective experiences with little further 
justification [25, 59, 72]. The growing field of eXplainable 
AI (XAI) has produced algorithms to generate explanations 
as short rules [60, 63, 87], attribution or influence scores 
[15, 24, 74, 86], prototype examples, partial dependence 
plots [16, 56], etc. However, little justification is provided 
for choosing different explanation types or representations. 

It is unclear why these explanations will be feasibly useful 
to actual users. To better direct research efforts, some AI 
researchers have argued for rigorous goals and definitions 
of human interpretability, criteria of explanations and 
evaluation methods [25, 72]. Desirable properties include 
model faithfulness [59], simulatability [72], and empirical 
evaluation with human subjects [25]. However, it is unclear 
why these properties are important to users. These 
guidelines provide high-level objectives for designing 
explainable solutions, while our framework provides 
lower-level building blocks to construct these solutions. 

2) Empirically derived taxonomies of explanation needs 
elicited from user surveys [66]. As AI researchers respond 
to the call for more human subjects evaluations [25] (e.g., 
[50, 80, 88]), this adds to the large body of work in HCI, 
Recommender Systems, and Intelligent User Interfaces that 
have long evaluated explainable interfaces with empirical 
studies (e.g., [15, 27, 37, 59, 65, 66, 69, 70, 102]). Some recent 
studies focused on evaluating what and how much to 
explain [18, 30]. Findings include only showing 
explanations that extend prior knowledge [18], and not to 
be too “creepy” by disclosing too much information [30]. 
Some researchers have taken an open-ended approach to 
probe users about their explanation needs under various 
contexts [27, 53, 66, 101]. To make sense of the variety of 
explanations, several explanation frameworks have been 
proposed for knowledge-based systems [32], recommender 
systems [38], case-based reasoning [90], intelligent 
decision aids [93], tutoring systems [32], intelligible 
context-aware systems [66], etc. These frameworks were 
mostly taxonomic and derived from diverse but limited user 
studies. Recently, there are efforts to formalize the process 
to elicit mental models and explanation needs (e.g., with a 
participatory design framework [27]). Subsequent to such 
elicitation, designers can use our framework to identify 
relevant reasoning goals and select corresponding 
explanation techniques. Furthermore, we identify theories 
in human thinking that drives the needs for different 
explanations thus providing theoretical justification. 

3) Psychological constructs from formal theories to 
guide explanation facilities via literature review [40, 41, 42, 
79]. Vermeulen et al. drew from theories in HCI and 
psychology on affordances to more precisely define 
feedforward interactions and inform their proper design in 
interactive systems [102].  Particularly relevant to our work 
are recent writings by Miller, Hoffman and Klein which 
discussed relevant theories from philosophy, cognitive 
psychology, social science, and AI to inform the design of 
XAI [40, 41, 42, 52, 79].  Miller noted that much of XAI 
research tended to use the researchers’ intuition of what 



 

 

constitutes a “good” explanation. He argued that to make 
XAI usable, it is important to draw from social sciences. 
Hoffman et al. [40, 41, 42] and Klein [52] summarized 
several theoretical foundations of how people formulate 
and accept explanations; empirically identified several 
purposes and patterns for causal reasoning, and proposed 
ways that users can generate self-explanations to answer 
contrastive questions. However, it is not clear how to 
operationalize this rich body of work in the context of XAI-
based decision support systems for specific user reasoning 
goals. Our framework builds on these constructs to 
explicitly link human reasoning and AI domains to provide 
operational pathways to select appropriate explanations. 

3 METHODOLOGY 

We sought to understand how people reason and which 
XAI facilities could satisfy their reasoning goals. Given the 
mature literature on human reasoning and large volume of 
work on XAI techniques, we first applied a rationalistic 
epistemological [33, 77] approach as our method of inquiry 
to develop our framework. That is, we performed a 
literature review and synthesized a conceptual framework 
from rationalizing logical connections. We then show a 
real-world example of applying the resulting framework in 
a concrete application by implementing specific 
explanations and evaluating their use in a co-design 
exercise with real users. This applies an empirical 
epistemological approach to inquiry.  

Literature review for forming the framework. Rather 
than perform a comprehensive encyclopedic literature 
review of relevant concepts in XAI [2, 12, 32, 109], our goal 
was to create an operational framework which developers 
of XAI interfaces and systems can use. We started with an 
existing literature review of different XAI techniques [2]. 
Specifically, we focused on medical diagnosis literature on 
medical decision making, philosophy and cognitive 
psychology. We iteratively refined our framework by 1) 
finding concepts in XAI, reasoning and psychology, 2) 
drawing connections between them to elucidate 
relationships, 3) finding gaps to justify why certain XAI 
techniques could be useful, and 4) searching for more 
concepts. 

Application of framework by developing an 
explainable AI decision aid. The validity and usefulness 
of a theoretical framework can be difficult to evaluate. Most 
frameworks are validated through debates within the 
research community or simply by the test of time. As a first 
step to evaluate our proposed framework, we apply it to 
develop an explainable decision support tool for medical 
diagnosis. Medicine is a critical application domain with a 

long history of leveraging on AI and requiring 
explainability [3, 10, 92]. We evaluated the designed 
explanations with users (clinicians) and implemented a real 
ML model with a real clinical dataset, to avoid spurious 
reasoning and insights that may arise from overly 
simplified or unrealistic medical scenarios.  

4 XAI FRAMEWORK OF REASONED 
EXPLANATIONS 

We have developed a conceptual framework (Figure 2) that 
links concepts in human reasoning processes with 
explainable AI techniques. By considering two aspects of 
the human and the machine, we further divide the 
framework into four main modules. First, we identify how 
people ideally reason and why we seek explanations 
(Section 4.1). These articulate reasoning methods and 
explanation types that provide the foundation of what good 
decision aids should support. Second, we describe various 
AI modeling and XAI facilities, and contextualize how they 
have been developed to support certain reasoning methods 
(4.2). Third, we introduce caveats in human decision 
making, highlighting how cognitive biases impair our 
reasoning (4.3). Fourth, we describe how XAI can be 
leveraged to mitigate decision biases (4.4). Figure 2 shows 
the key modules and pathways linking them to illustrate 
how some reasoning methods can be supported by XAI 
facilities. 

4.1 How People should Reason and Explain 

This section informs how XAI can support different 
explanation types by articulating how people understand 
events or observations through explanations. We drew 
these insights from the fields of philosophy, psychology, 
and decision science, specifically 1) different ways of 
knowing, 2) what structures contain knowledge, 3) how to 
reason logically and 4) why we seek explanations.  

4.1.1 Explanation Goals. The needs for explanations are 
triggered by a deviation from expected behavior [39, 79], 
such as a curious, inconsistent, discrepant or an anomalous 
event. Alternatively, users may also seek to monitor for an 
expected, important or costly event. Miller [79] 
summarized the main reason that people want explanations 
is to facilitate learning by allowing the user to (i) filter to a 
small set of causes to simplify their observation [73], and to 
(ii) generalize these observations into a conceptual model 
where they can predict and control future phenomena [37]. 
The latter goal of prediction is also described as human-
simulatability [72]. We orient our discussion of 
explanations with respect to these broad goals of finding 
causes and concept generalization. 



 
 

 

 

From the AI research perspective, a recent review by Nunes 
and Jannach summarized several purposes for explanations 
[81]. Explanations are provided to support transparency, 
where users can see some aspects of the inner state or 
functionality of the AI system. When AI is used as a 
decision aid, users would seek to use explanations to 
improve their decision making. If the system behaved 
unexpectedly or erroneously, users would want 
explanations for scrutability and debugging to be able to 
identify the offending fault and take control to make 
corrections. Indeed, this goal is important and has been well 
studied regarding user models [7, 48] and debugging 
intelligent agents [59]. Finally, explanations are often 
proposed to improve trust in the system and specifically 
moderate trust to an appropriate level [8, 15, 68].  

4.1.2 Inquiry and Reasoning. With the various goals of 
explanations, the user would then seek to find causes or 
generalize their knowledge and reason about the 
information or explanations received. Pierce defined three 
kinds of inferences [83]: deduction, induction, and 
abduction. Deductive reasoning “top-down logic” is the 

process of reasoning from premises to a conclusion. 
Inductive reasoning “bottom-up logic” is the reverse 
process of reasoning from a single observation or instance 
to a probable explanation or generalization. Abductive 
reasoning is also the reverse of deductive reasoning and 
reasons from an observation to the most likely explanation. 
This is also known as “inference to the best explanation”. It 
is more selective than inductive reasoning, since it 
prioritizes hypotheses. 

Popper combined these reasoning forms into the 
Hypothetico-Deductive model as a description of the 
scientific method [5, 84, 107]. The model describes the steps 
of inquiry as (1) observe and identify a new problem, (2) 
form a hypothesis as induction from observations, (3) 
deduce consequent predictions from the hypotheses, and 
(4) test (run experiments) or look for (or fail to find) further 
observations that falsify the hypotheses. It is commonly 
used and taught in medical reasoning [20, 28, 82]. 

Finally, analogical reasoning as the process of reasoning 
from one instance to another. It is a weak form of inductive 
reasoning since only one instance is considered instead of 

 

Figure 2. Conceptual framework for Reasoned Explanations that describes how human reasoning processes (left) informs 
XAI techniques (right). Points describe different theories of reasoning, XAI techniques, and strategies for designing XAI. Arrows indicate 
pathway connections: red arrows for how theories of human reasoning inform XAI features, and grey for inter-relations between different 
reasoning processes and associations between XAI features. Only some example pathways are shown. For example, hypothetico-deductive 
reasoning can be interfered by System 1 thinking and cause confirmation bias (grey arrow). Confirmation bias can be mitigated (follow 
the red line) by presenting information about the prior probability or input attributions. Next, we can see that input attributions can be 
implemented as lists and visualized using tornado plots (follow the grey line). We identified many pathways but show only a few for 
brevity. 

 



 

 

many examples [95, 103]. Nevertheless, it is often used in 
case base reasoning and in legal reasoning to explain based 
on precedence (same case) or analogy (similar case) [61, 96]. 

4.1.3 Causal Attribution and Explanations. As users inquire 
for more information to understand an observation, they 
may seek different types of explanations. Miller identified 
causal explanations as a key type of explanation, but also 
distinguished them from causal attribution, and non-causal 
explanations [79]. 

Causal attribution refers to the articulation of internal or 
external factors that could be attributed to influence the 
outcome or observation [37]. Miller argues that this is not 
strictly a causal explanation, since it does not precisely 
identify key causes. Nevertheless, they provide broad 
information from which users can judge and identify 
potential causes. Combining attribution across time and 
sequence would lead to a causal chain, which is 
considered a trace explanation or line of reasoning. 

Causal explanation refers to an explanation that is 
focused on selected causes relevant to interpreting the 
observation with respect to existing knowledge. This 
requires that the explanation be contrastive between a fact 
(what happened) and a foil (what is expected or plausible to 
happen) [71, 79]. Users can ask why not to understand why 
a foil did not happen. The selected subset of causes thus 
provides a counterfactual explanation of what needs to 
change for the alternative outcome to happen. This helps 
people to identify causes, on the scientific principle that 
manipulating a cause will change the effect. This also 
provides a more usable explanation than causal attribution, 
because it presents fewer factors (reduces information 
overload) and can provide users with a greater perception 
of control, i.e., how to control the system. A similar method 
is to ask what if the factors were different, then what the 
effect would be. Since this asks about prospective future 
behavior, Hoffman and Klein calls this transfactual 
reasoning; conversely, counterfactual reasoning asks 
retrospectively [40, 41]. This articulation highlights the 
importance of contrastive (Why Not) and counterfactual 
(How To) explanations instead of simple trace or 
attribution explanations typically used for transparency. 

4.1.4 Decision Theories. Several theories from decision 
science describe how to make decisions to optimize choice. 
Rational choice theory, and specifically, expected utility 
[105, 106], describes how people make decisions under 
uncertainty based on the utility (value or risk) and 
probability of different outcomes. By understanding the 
relative value of outcomes, people can compare outcomes 

and determine causes for why some outcomes were valued 
higher than others, or why their probabilities differed. 

4.1.5 Summary. We have identified theoretical bases of 
inquiry, reasoning and explanation goals. We next describe 
various explanations and AI facilities and how they support 
reasoning. 

4.2  How XAI Generates Explanations 

Now we turn to how algorithms generate explanations, in 
searching for connections with human explanation 
facilities. We characterize AI and XAI techniques by how 
they (A) support human reasoning and specific methods of 
scientific inquiry, such as Bayesian probability, similarity 
modeling, and queries; and (B) how to represent 
explanations with visualization methods, data structures 
and atomic elements. Where relevant we link AI techniques 
back to concepts (blue text) in rational reasoning. 

4.2.1 Bayesian Probability. Due to the stochastic nature of 
events, reasoning with probability and statistics is 
important in decision making. People use inductive 
reasoning to infer events and test hypotheses. Particularly 
influential is Bayes theorem that describes how the 
probability of an event depends on prior knowledge of 
observed conditions, specifically, prior and posterior 
probabilities, and likelihood [9]. Understanding outcome 
probabilities can inform users about the expected utility. 

Bayesian reasoning helps decision makers to reason by 
noting the prevalence of events. E.g., doctors should not 
quickly conclude that a rare disease is probable, and they 
would be interested to know how influential a factor or 
feature is to a decision outcome.  

4.2.2 Similarity Modeling. As people learn general concepts, 
they seek to group similar objects and identify 
distinguishing features to differentiate between objects. 
Several classes of AI approaches have been developed, 
including modeling similarity with distance-based 
methods (e.g., case base reasoning [1], clustering models 
[76]), classification into different kinds (e.g., supervised 
models [e.g., 19, 85], nearest neighbors [4]), and 
dimensionality reduction to find latent relationships 
(e.g., collaborative filtering [13], principal components 
analysis [44], matrix factorization [55], and autoencoders 
[91, 104]). Many of these methods are data-driven to match 
candidate objects with previously seen data (training set), 
where characterization depends on the features engineered 
and the model which frames an assumed structure of the 
concepts. Explanations of these mechanisms are driven by 
inductive and analogical reasoning to understand why 
certain objects are considered similar or different. 



 
 

 

 

Identifying causal attributions can then help users ascertain 
the potential causes for the matching and grouping. Note 
that while rules appear to be a distinct explanation type, we 
consider them descriptions of the boundary conditions 
between dissimilar groups. 

4.2.3 Intelligibility Queries. Lim and Dey identified several 
queries (called intelligibility queries) that a user may ask of 
a smart system [66, 67]. Starting from a usability-centric 
perspective, the authors developed a suite of colloquial 
questions about the system state (Inputs, What Output, 
What Else Outputs, Certainty), and inference mechanism 
(Why, Why Not, What If, How To). While they initially 
found that Why and Why Not explanations were most 
effective in promoting system understanding and trust [65], 
they later found that users use different strategies to check 
model behavior and thus use different intelligibility queries 
for the same interpretability goals [68, 70]. In this work, we 
identify theoretical foundations that justify these different 
queries.  

The previous subsections described mechanisms and 
constructs driven by reasoning semantics and explanation 
goals. These generate explanations that are often in similar 
forms. Next, we describe common data structures and 
atomic elements of explanations that are used to represent 
these semantic structures.  

4.2.4 XAI Elements. We identify building blocks that 
compose many XAI explanations. By identifying these 
elements, we can determine if an explanation strategy has 
covered information that could provide key or useful 
information to users. This reveals how some explanations 
are just reformulations of the same explanation types but 
with different representations, such that the information 
provided and interpretability may be similar. Currently 
popular is showing feature attribution or influence [16, 56, 
74, 86] by indicating which input feature of a model is 
important or whether it had positive or negative influence 
towards an outcome. Another intuitive approach highlights 
similar (or different) instances from the training data, 
prototypes, criticism, and counter-examples [49, 54, 88]. 
Other elements include the name and value of input or 
outputs (generally shown by default in explanations, but 
fundamental to transparency), and the clause to describe if 
the value of a feature is above or below a threshold (i.e., a 
rule). 

4.2.5 (Data) Structures. With the elements identified, we 
next describe several structures commonly used. These 
generally align with concepts in data structures that are 
taught in undergraduate computer science. The simplest 
and most common way to construct explanations is as lists 

[16, 56, 74, 86]. If sorted, this would represent concepts 
related by some criteria of importance. Lists are often used 
to represent input feature attributions, and can also 
represent output class attributions. Logical clauses can be 
combined into rules [63] or as a decision tree to describe 
branching logic. To represent more complicated 
relationships or conceptual models, such as ontologies, 
graphs with nodes and edges are used. In non-CS 
disciplines, such as education, these are sometimes called 
concept maps. Essentially, these structures describe 
concepts and their relationships. Executing these rules 
would exercise deductive reasoning, a key method of 
inquiry.  Finally, the extensible object data type can be used 
to represent simple (e.g., linear equation) or arbitrary 
structures that are domain dependent. This is useful for 
representing exemplar or prototype instances of concept 
classes or cases in case-based reasoning. By abstracting 
concepts into higher level generalizations, using objects in 
explanations leverages on analogical and inductive 
reasoning. 

4.2.6 Visualizations. While some explanation structures can 
be communicated with textual explanations or single lists, 
complex concepts are better explained with visualization 
techniques. To provide data and algorithmic transparency, 
basic charts can be used to represent raw data (e.g., line 
charts for time series data) and canonical visualizations 
can be used to illustrate model structure (e.g., node-link 
diagrams for trees and graphs). To support causal 
attribution, tornado diagrams of vertical bar charts are 
popularly used for lists of attributions [86], saliency 
heatmaps for attributing to pixels or super-pixels for 
image-based models [50, 86], or highlighting on paragraph 
text [15, 58]. These visualization techniques support 
contrastive explanations and counterfactual reasoning by 
allowing for the comparison of different attributions (e.g., 
bar charts, heatmaps) or understanding of relationships 
between factors (tree or graph visualizations). Leveraging 
on inductive reasoning, scatterplot diagrams help users 
to perceive the similarity between objects by presenting 
objects in lower dimensionality projection (e.g., t-SNE) 
[47]. Drawing from statistical inference, partial 
dependence (PD) plots have been used to visualize how 
feature attribution varies across different feature values [16, 
56]. Some work has extended this to show interaction 
effects between two factors [16, 75]. Finally, sensitivity 
analysis provides several methods as a robustness test to 
ask what if the input factors change slightly or are 
perturbed, whether the outcome of a decision will change. 
These visualization techniques support rational choice 
reasoning with counterfactuals by displaying how the 



 

 

expected utility or risk of an outcome changes as input 
factors change. Hence, these decision aids, if used properly 
and deliberately, can support rational decision making. 

4.2.7 Summary. We found that different AI models adhere 
to different human reasoning processes, and many recent 
XAI explanations are composed of common building blocks 
that can be represented by interpretable data structures and 
visualizations. These relationships can guide the choice of 
XAI techniques and components to help compose coherent 
explanation solutions depending on the explanation goals 
and expected reasoning methods users.   

4.3  How People Actually Reason (with Errors) 

So far, we have described how people reason rationally and 
the XAI explanations that can support this. However, 
people also reason heuristically to make decisions faster. In 
this section, we provide an overview of how people reason 
quickly and how decision errors can arise. This is best 
described with the dual process model [46], which has been 
used to universally describe many aspects of cognitive 
psychology. To make our analysis more concrete, we draw 
from literature in medical decision making.   

4.3.1 Dual Process Model. Croskerry described a universal 
model for diagnostic reasoning as primarily driven by the 
Dual Process Model, which was popularized by Kahneman 
[20, 21, 22]. This clusters different approaches of thinking 
into System 1 and System 2, thinking fast and slow, 
respectively [46].  

System 1 thinking is fast, intuitive, and low effort, where 
the person employs heuristics (unconscious cognitive 
shortcuts) to make quick decisions. For example, to quickly 
recognize an item, we apply the representativeness heuristic 
to use inductive reasoning to compare it and determine its 
similarity to a previously observed item. Thus, an 
experienced person who has seen many examples and 
learned to generalize can make decisions quickly with this 
pattern matching approach. However, as we discuss later, 
this can also lead to cognitive bias for inexperienced people.  

System 2 thinking is slow, analytical, and high effort, 
where the person employs rational reasoning processes. 
Given the structure required for System 2 thinking, people 
need to be trained in their specific domain to have the 
necessary logical, semantic or mathematical concepts to 
reason. We had described processes and models from 
philosophy and AI in Sections 4.2 and 4.3, such as deductive 
reasoning, the hypothetico-deductive model, and Bayesian 
reasoning. These are relevant methods that people can 
systematically use under System 2 thinking. However, it is 
well-known that System 1 processes can interfere with 

System 2 thinking such that instead of reasoning with 
rational choice, users may reason under bounded 
rationality [93], be subjected to prospect theory of risk 
aversion [100], etc.  

These confounded reasoning processes are well 
documented [11]. In fact, even as the dual process model 
explains how people make good decisions quickly or 
rationally, it also explains why people make suboptimal or 
wrong decisions. We next describe some ways that decision 
errors arise. 

4.3.2 System 1 Decision Errors: Heuristic Biases. Although 
heuristics can speed up decision making, they sometimes 
oversimplify the situation and are compromised by factors, 
such as overconfidence, fatigue and time pressure. 
Lighthall et al. described decision making in intensive care 
and highlighted several heuristic biases [64]. For brevity, 
we summarize them in Table 1. 

4.3.3 Forward and Backward Reasoning with Hypothetico-
Deductive Model. While System 2 thinking can lead to good 
decisions, System 1 processes can interfere with System 2 
processes and lead to wrong decisions [20]. Patel and 
colleagues identified two types of reasoning due to 
differences in the levels of expertise of doctors [6, 82]. 
Expert doctors tended to use a forward-oriented, data-
driven reasoning strategy, where they start with 
observation findings (vital signs, lab test results, etc.) and 
derive a hypothesis (diagnosis). In contrast, novice doctors 
tend to use a backward-oriented, hypothesis-driven 
reasoning strategy, where they first generate hypothesized 
diagnoses and then look for findings that match the 
hypothesis. Backward reasoning tends to lead to diagnostic 
errors, due to a lack of a knowledge base in novice doctors 
[82], and confirmation bias, where the decision maker tends 
to look for confirming evidence of a wrongly-chosen 
hypothesis [23]. Even with a rigorous reasoning model 
based on a reasonable knowledge base, this heuristic bias 
can lead to poor decisions. Later, we discuss how 
explanations can mitigate this problem and how poorly 
designed XAI may even aggravate it. 

4.3.4 System 2 Decision Errors: Misattributed Trust in 
Wrongly Calibrated Tool. Even without cognitive biases, 
System 2 thinking may still fail due to using a miscalibrated 
tool [21] or a lack of domain knowledge [82]. Croskerry 
describes how a doctor depending unknowingly on a 
miscalibrated diagnostic test can lead to misdiagnosis and 
that the doctor should not have been confident in the tool 
[21]. In the context of AI-driven decision support, this is 
equivalent to decision makers depending on a model with 



 
 

 

 

poor accuracy. Therefore, they over-trust an unreliable 
model. 

4.3.5 Summary. We have described how cognitive heuristics 
can speed up and reduce effort in decision making but can 
also lead to non-rational reasoning or biased decisions. 
Although XAI techniques have implicitly been designed to 
support rational reasoning, in the next section, we discuss 
how to use our framework to design strategies to mitigate 
some cognitive biases.  

4.4 How XAI Supports Reasoning (and Mitigates 
Errors) 

Decision aids can be used to improve decision making and 
reduce decision errors. Here, we discuss how specific XAI 
facilities can be used to mitigate the aforementioned 
cognitive biases. Once again, we draw from literature in 
medical decision making to make our analysis more 
concrete. In addition to describing important heuristic 
biases, Lighthall et al. summarized strategies to overcome 
them [64] (Table 1). We selected a subset of heuristic biases 
for which we identify how XAI can play a role to mitigate 
them, and hence improve decision making and trust. Note 
that we do not provide a comprehensive solution, since 
there are over 50 known cognitive heuristics [11]. While 
these mitigating strategies are not new, we note that they 
are typically framed as educational approaches to promote 
meta-cognition in healthcare practitioners and increase 
awareness of decision making pitfalls [20, 64]. Instead, we 
propose that explanation facilities can be used as a crutch 
to help decision makers validate their thinking. We link 
explanation strategies back to XAI facilities (orange text). 

4.4.1 Mitigate Representativeness Bias: Prototype Cases of 
Decision Outcomes. Representativeness bias happens when 
a decision maker perceives the current situation as similar 
to other cases of a wrong classification. This can be due to 
a lack of experience in seeing many examples or a lack of 
focus on salient features. To mitigate this bias, we can show 
prototype instances to represent different outcomes; the 
prototypes can be rank-ordered by their similarity to the 
current case or by explicitly showing a (dis)similarity 
distance metric. To allow for comparison between cases by 
inspecting features, the difference in value or attribution per 
feature can be shown to contrast the differences between 
cases. 

4.4.2 Mitigate Availability Bias: Prevalence of Decision 
Outcomes. Availability bias can occur when decision 
makers are unfamiliar with how often a particular outcome 
happens. This can be mitigated by showing the base rate of 
the outcome (prior probability) based on frequencies in 

the training dataset, SHAP bias [74]. Key insight: this is 
contrary to showing system confidence or uncertainty, 
which is related to the posterior probability of the outcome. 

4.4.3 Mitigate Anchoring Bias: Premortem of Decision 
Outcome. The anchoring bias occurs when the decision 
maker forms a skewed perception due to an anchor and 
fixates on a decision (early closure). This limits the 
exploring of alternative hypotheses. To mitigate this, 
Lighthall et al. proposed highlighting how (inputs) findings 
may also be indicative of other hypotheses [64]. This can be 
facilitated by showing input attributions for multiple 
outcomes. By seeing how attributions are contrasted for 
different hypotheses, doctors may identify alternative 
diagnoses. 

Lighthall et al. also proposed using Klein’s premortem 
prospective hindsight exercise [51], where decision makers 
posit that their primary hypothesis ends up being wrong 
and have to determine why [51]. This can be facilitated by 
generating a counterfactual explanation with rules (e.g., 
Anchor LIME [87] or LORE [34]) to determine what input 
features could be slightly different to lead to a different 
outcomes. Alternatively, sensitivity analysis could be used 
to simulate a range of perturbed input values and test the 
stability of the primary hypothesis. 

4.4.4 Mitigate Confirmation Bias: Discourage Backward-
Driven Reasoning. To mitigate confirmation bias, we should 
encourage doctors to reason with the hypothetico-deductive 
method. We propose an explanation strategy that avoids 
backward-oriented reasoning by showing Findings (input 
attributions) first, instead of Hypotheses (posterior 
probability or class attribution). Key insight: this is 
contrary to first showing system uncertainty as a shallow 
level of explanation and more transparent Inputs or 
mechanism as details on demand (e.g., [15, 69]). In addition, 
to encourage disproving their initial diagnosis, the system 
can show the prior probability of the inference 
(diagnoses). 

4.4.5 Moderate Trust: Exposing System State and Confidence. 
Earlier work has argued for and demonstrated how 
providing explanations can improve trust because of 
increased user understanding (e.g., [65, 69, 81, 98]), 
however, Lim and Dey have also found that users should 
not trust systems when they are poorly performing; 
showing explanations of low confidence can further 
decrease this trust [69]. From our framework, we believe 
that this over-trust is due to biased System 2 thinking of 
fallaciously believing that the AI system has a higher-than-
expected accuracy. To moderate users to trust the system 
at appropriate times or trust specific sub-components of the 



 

 

system [70], the system should be transparent to show 
What and Inputs explanations and show its classification 
certainty. Once the user detects erroneous reasoning in 
the system, scrutability features can be contrasted to allow 
for model debugging and correction (by a technical expert). 

4.4.6 Summary. We have described how we can use various 
XAI components of our framework and identify pathways 
to support good reasoning behaviors in users. This seeks to 
mitigate cognitive biases that may arise due to heuristic 
reasoning.  

4.5 Summary of Framework  

Our framework describes how people reason rationally 
(Section 4.1) and heuristically but subject to cognitive 
biases (4.3), how XAI facilities do support specific rational 
reasoning processes (4.2), and can be designed to target 
decision errors (4.4). The framework identifies pathways 
between human reasoning and XAI facilities that can help 
organize explanations and identify gaps to develop new 
explanations given an unmet reasoning need. XAI 
application developers can use our framework as follows: 
First, consider the user's reasoning goals (4.1) and biases 
(4.3) for their respective apps. This can be informed through 
literature review, ethnography, participatory design [27], 

etc. Next, identify which explanations help reasoning goals 
(4.2) or reduce cognitive biases (4.4) using pathways in the 
framework (Figure 2 red arrows). Finally, integrate these 
XAI facilities to create explainable UIs. Furthermore, XAI 
researchers can extend our framework by 1) examining 
new XAI facilities (4.2) to understand how they were 
inspired by, dependent on, or built from reasoning theories 
(4.1) and 2) identifying common biases and reasoning 
errors (4.3) related to reasoning theories (4.1) and then 
identifying appropriate mitigation strategies (4.2) to select 
specific XAI facilities. For example, Informal Logic [99] 
could be integrated into reasoning theories (4.1) and 
informal fallacies [35] into reasoning errors (4.3). 

5 APPLICATION: EXPLAINING MEDICAL 
DIAGNOSIS 

We have developed our framework using a theory-driven 
approach and we next apply it by implementing an 
explainable AI-based early decision aid to diagnose patients 
in an Intensive Care Unit (ICU). Given the critical 
importance of ensuring correct medical diagnostic 
decisions, it is paramount for AI-based clinical decision 
support tools to explain themselves. Thus, the medical 

Table 1. Heuristic biases that lead to decision (diagnostic) errors and strategies for mitigating them as reported in [64]. We 
consider how XAI can provide facilities to aid in these strategies. 

Heuristic 
Bias Description 

Strategies to overcome 
systematic errors [64] XAI Strategies for Medical Decisions 

Represent-
ativeness 

Judging likelihood of an event 
'A' belonging to a condition 
due to similarities between the 
two, but not judging whether A 
belongs to some other process 
that could be more similar. 

Compare disease with 
prototypes of the condition; 
be suspicious when there is no 
good match. 

- Identify prototypes of patient instances for 
each diagnosis 
- Show similarity between current patient and 
prototype(s) via similarity distance. 
- Highlight similarity and contrast differences 
in terms of data feature value or attributions. 

Availability Bias in perceiving that 
memorable, unusual or adverse 
events are more likely 
(frequent) than they truly are. 

Seek base rate of a diagnosis. - Show prior probability (equivalent to SHAP 
bias) of diagnoses (in dataset). 

Anchoring Skewed perception of a value 
due to a supplied numerical 
value (anchor). 

Avoid confirmation and early 
closure; make use of lab tests 
to “prove” other leading 
diagnoses.  
“Crystal ball” exercise 
("premortem" prospective 
hindsight [51]). 

- Show input attributions for multiple 
outcomes to allow contrastive reasoning.  
- Facilitate counterfactual to test How To 
reduce the probability of primary diagnosis 
with Rules (e.g., aLIME, LORE). 
- Facilitate sensitivity analysis with What If 
explanations to test stability of primary 
hypothesis. 

Confirmation Collecting redundant 
information to confirm an 
existing hypothesis, instead of 
finding evidence of competing 
possibilities. 

- Use hypothetical-deductive 
method to assess value and role 
of contemplated tests. 
- Try to disprove your 
diagnosis, consider conditions 
of higher prevalence. 

- Show Findings (input attribution) first, 
instead of Hypotheses (output posterior 
probability). Insight: this is opposite to typical 
Machine Learning apps to show output 
uncertainty first. 
- Show prior probability (equivalent to SHAP 
bias) of diagnoses (in dataset). 

 



 
 

 

 

domain is canonical for XAI (e.g., Leeds Abdominal Pain 
System [3], MYCIN [14, 92], DXPLAIN [10], GA2M [16], 
Bayesian Rule List [63, 94], Prospector [56], EMBalance 
[15], AM-FM decompositions [43]). While these works use 
compelling explanations, the justification for selecting 
specific explanations is unclear. We demonstrate how using 
our framework, we can identify specific explanation types 
to improve medical decision making by reducing cognitive 
biases.  

5.1 Implemented Model & Explanation Sketches 

Using steps described in Section 4.5, we developed an ex-
plainable clinical decision support visualization to help 
reduce diagnostic error due to four cognitive biases (Table 
1). We aim to explore how real users would interact with 
realistic explanations generated from a real model built 
over a real dataset to capture any nuance from AI decisions. 
Furthermore, given the complex nature of medical 
diagnosis, it is not reasonable for clinicians to reason over 
fake clinical cases as it could impair our findings if they 
encounter impossible details (e.g., vital signs not matching 
a diagnosis). Hence we used the MIMIC III [45] dataset to 
train a multi-label gradient boosted tree (XGBoost [17]) 
using 833 extracted features (17 patient vital × 7 time 
windows × 7 statistics) [36] to perform phenotype 
diagnosis based on the first 24 hours vitals of a patient in 
the ICU.  We used state-of-the-art XAI facilities, such as 
SHAP [74] for attribution, LORE [34] for counterfactual 
rules, MOEA/D for sensitivity analysis [108] and 
implemented visualizations in Tableau. For simplicity, we 
presented most explanations aggregated in terms of 17 vital 
signs instead of the full 833 features. Figure 3 shows some 
examples of the explanation sketches which support 
different mitigation strategies. We iterated the 
visualizations by pilot testing with 5 clinical collaborators 
(not participants).  

5.2 Co-Design Method and Participants 

We recruited 14 clinicians (10 female; ages 24-29) from a 
local hospital: two senior residents, one medical officer and 
other residents. On average, they had 2.9 years of working 
experience, 2.6 years using a clinical decision support 
system and 2.1 months on rotation in the Intensive Care 
Unit (ICU). All participants were from the department of 
advanced internal medicine. 

Each co-design session was done with one clinician and at 
least two research team members. After signing a consent 
form and agreeing to be audio recorded, we asked the 
participant to fill out a brief background survey. We briefed 
the participant on how to use and interpret the diagnosis 

dashboard and explanation facilities. We asked participants 
to diagnose one or two pre-selected patient cases using as 
many or little of the dashboard features as they wished. We 
understand that there may be erroneous explanations or 
model predictions, but this was beyond the scope of our 
initial exploration. We instructed participants to think 
aloud to explain their diagnostic reasoning process and 
their thoughts as they used the explanation interface. To 
investigate the usefulness of particular features, we 
occasionally prompted participants to consider different 
explanation facilities. To respect the busyness of doctors, 
each session was limited to about 30 minutes. Participants 
were compensated with café gift cards. 

5.3 Findings from Co-Design 

We consolidated findings from the co-design sessions and 
conducted an affinity diagram exercise with three research 
team members to cluster our notes into recurring themes. 
Our findings show how users’ reasoning goals and meta-
cognitive awareness of decision fallacies drive the (dis)use 
of different explanation types. With respect to the 
framework, the co-design exemplifies how to apply it by 
using its pathways to design an explainable interface and 
how to use its various constructs to interpret the reasoning 
processes that users engaged in. 

5.3.1 Finding Alternative Hypotheses. We found many 
instances of users seeking alternative hypotheses with or 
without various types of XAI. First, most users deliberately 
did not want to be influenced or primed by the AI diagnosis 
prediction. E.g., P13 chose to start with seeing Feature 
values (vitals) and attributions, instead of seeing class 
prediction and attribution (inferred diagnosis and risk), 
because he “would like to get an idea of [his] own differentials 
first instead of being influenced by system prediction”. Users 
did not yet trust the AI’s accuracy and were aware that this 
dependency may lead to decision bias. Indeed, this follows 
our understanding that backward reasoning can lead to 
confirmation bias. Users did not want to see any diagnostic 
prediction, risk score (class attribution), feature attribution, 
or any other explanations. Only one user, P3, demonstrated 
flawed backward reasoning and led his exploration by 
first inspecting class attributions and then feature 
attributions. He did this for his second patient case after 
seeing how the system was accurate with the first case. This 
led to fallacious diagnoses in the second case. 

However, even though users initially avoided explanations, 
after they had made their initial hypothesis (diagnosis), to 
consider alternatives, they wanted to see what the AI 
decided. Users were mainly interested in (1) class 
attributions (predicted risk) or (2) feature attributions (vital 



 

 

signs). If users saw a class attribution that was higher 
than expected (contrast), they would look for potentially 
responsible feature values and consider their validity. They 
would not necessarily see feature attributions, preferring to 
check feature values themselves. An alternative approach 
focused on feature attributions that were (2a) high or (2b) 
different than expected. In the former case, the high 
magnitude drew their attention to inspect the feature 
values, where they would generate other hypotheses. In the 
latter case, users had a mental model of what features 
should be important and they would contrast this with the 
attributions generated by the AI. This contrastive analysis 
behavior was also observed with counterfactual rules, 
where users were looking for unexpected rules. 

We observed users applying analogical reasoning to see 
explanations of previous prototypes. P4, P7, and P14 
wanted to see past patients which had similar presentations 
(e.g., complaints, vital signs), but not necessarily similar 
diagnoses (decision outcomes). Users were not interested in 
a quick summary or ranking of prototypes by an aggregate 
similarity score, since they do not trust the basis of the 

similarity. Instead, they would rather compare feature 
values and attributions to determine the extent of similarity. 
Users would then compare the ground truth or prediction 
outcomes of the past prototypes to consider alternatives. 

As users sought out new alternative hypotheses, some also 
applied the premortem technique of discounting their 
primary diagnosis, i.e., assuming that it could be wrong and 
finding another viable alternative. P4 found counterfactual 
reasoning useful even though one cannot change a 
patient’s history, “because it’s a matter of possibility. It’s how 
you rank your differentials”, indicating that she was open to 
alternative hypotheses. Users were interested to use 
sensitivity analysis to check on the stability of a diagnosis 
prediction by asking counterfactual What If questions 
and perturbing input values, seeing a partial dependence 
plot, or reading through the list of counterfactual rules. 
Given the long rules, some users found them tedious to 
read, while one user could rapidly skim them as she was 
mainly looking for unexpected rules 

Overall, users iteratively performed forward and backward 
reasoning to generate and confirm hypotheses, following 
the hypothetico-deductive model. XAI facilities can provide 
several hints for further investigation, but most users prefer 
to return to the feature data or source material to confirm 
new hypotheses. 

5.3.2 Coherent vs. Isolated Attribution. Users felt that the 
tornado plots suggested that each feature was 
independently attributing to a prediction. For example, P6 
found it contradicting that the diastolic and systolic blood 
pressure features had opposing attributions for a heart 
attack. Users preferred to see related features together or 
how features may interact.  

5.3.3 Lack of Trust: Verify with Supplementary, Situational, 
Source Data. A lack of trust drove users to want to verify 
the AI’s decision by looking at raw data, in this case, patient 
case and physical exam notes, or recorded data, such as 
ECG readings, even if the AI model did not use such data. 
P7 felt that “without the context of the patient, [she] can’t 
diagnose based on the vitals itself. So [she] wouldn’t really 
trust”. In fact, this need to show raw situational data is 
commonly expected in different applications, such as 
showing test images in image recognition applications, and 
providing raw audio recordings in sound-based 
applications [70]. 

5.3.4 Conditional Prevalence of Decision Outcomes. To 
control availability bias, users were interested to see the 
prevalence of diagnosis. P7 used this as a hint to “bring 
[her] to rule the most prevalent cause out, but it won’t be 
the determining factor whether [she] would like to 

 

Figure 3. Screenshot of the AI-driven medical diagnosis 
tool with explanation sketches showing a patient with high 
predicted risk of acute myocardial infarction (AMI), heart 
disease, diabetes with complications, shock, etc. 
Explanations include (top left) feature value time series, 
(top right) class attribution of predicted disease risk, 
(middle right) feature attribution by vitals, and (bottom) 
counterfactual rules indicating key rules for each 
prediction. Interpretation: e.g., explanations suggest that 
the AI thinks that the patient has shock because of low 
oxygen saturation and blood pressure. 

 



 
 

 

 

diagnose the patient”. Specifically, they wanted to see 
prevalence for a subset of patients of most similar patients, 
including patients with the same demographics or 
presentation (vital signs, complaints, etc.). This 
demonstrates Bayesian reasoning, where doctors consider 
how knowing certain feature values can affect the posterior 
probability of the diagnosis. 

6 DISCUSSION: LESSONS LEARNED FROM 
FRAMEWORK 

Although our design of XAI strategies were theory-driven, 
our co-design exercise with real users provided insights 
into 1) how some XAI strategies were used as expected, and 
2) how certain reasoning methods and goals were 
supported with unexpected different XAI facilities, and 3) 
how users were interested in additional XAI facilities or 
using them in ways that we did not previously consider. 
We discuss recommendations on how to further refine XAI 
designs to improve human interpretability. While our 
application was specific to the medical domain, we believe 
that these recommendations can apply to other domains.  

Support hypothesis generation. A user seeking an 
explanation may know that the system output is not as 
expected and therefore seek a contrastive explanation [71, 
79]. The explanation may suggest one or more causes, but 
the user will reason abductively to determine the most 
likely cause (best hypothesis). This process can involve 
repeated hypothesis generation and seeking of alternative 
hypotheses. We have found multiple XAI facilities that 
support hypothetico-deductive (H-D) reasoning, namely, 
feature and class attributions of the current instance, 
contrastive explanations of prototype instances, and 
counterfactual explanations with key rules and 
visualizations. While Miller argues for supporting 
contrastive explanations with counterfactual reasoning 
rules [71, 79], we further argue that XAI should support 
abductive and H-D reasoning i.e., in addition to providing 
counterfactuals to help users find causes, we should 
provide explanations to allow users to generate and test 
hypotheses to further narrow down potential causes. 

Support forward (data-driven) reasoning by showing feature 
values and attributions before class attribution to avoid 
confirmation bias and backward reasoning, where the user 
does not consider other hypotheses independently. This 
recommendation runs counter to most recommendations of 
showing shallow explanations first and allowing details on 
demand, but mainly to limit information overload (e.g., [27, 
58, 69]). 

Support coherent factors. Depending on the domain, users 
may expect some features to be correlated or have some 
other relationship and would be confused if these features 
contradict their typical relationship. Such feature 
attributions should be aggregated together or have their 
interaction relationship visualized (e.g., with an 
interaction-effects partial dependence plot in GA2M [16] or 
SHAP interaction plots [74]). 

Supporting access to source and situational data. When 
adopting a new AI, users may want to manually perform 
decision making with a few instances to build up their trust. 
Showing raw data or supplementary data about the 
situation, even if not used directly by the model, can help 
with this verification goal. Example situational data include 
raw images and audio clips (e.g., [70]). 

Support Bayesian reasoning. Many studies on explanations 
argue for showing system uncertainty [8, 68]. This is 
equivalent to showing the system posterior probability or 
class attribution. However, we found that it is also 
important to show other probabilities, namely, (1) prior 
probability to indicate the prevalence of classes in general, 
and (2) intermediate posterior probabilities, where after 
filtering on a set of salient features or factors to indicate the 
conditional prevalence of an outcome. 

Integrating multiple explanations. Similar to [69, 70], we 
found that users employed a diverse range of XAI facilities, 
to reason variedly. Therefore, while much work has focused 
on developing good specific XAI algorithms, more work is 
needed to integrating multiple explanations into single 
explanations. Examples of multi-explanation applications 
include Laksa [70] and Intellingo [18]. 

7 LIMITATIONS AND FUTURE WORK 

While our framework provides insights into using XAI 
facilities to target specific human reasoning, it does not 
cover all aspects of reasoning or all XAI techniques. We 
discuss where to apply this framework, opportunities for 
generalization and future work. 

Current scope of framework. We have focused on improving 
decision making with XAI by generating and testing 
hypotheses and finding causes. This covers a broad range 
of explanatory goals. However, Abdul had identified other 
goals for XAI, such as providing transparency for 
algorithmic accountability and detecting model bias [2]. 
Our current model does not address these aspects which 
relate more towards providing justification explanations, to 
explain if a decision is good [97], has good past 



 

 

performance [37], or has a trustworthy or authoritative 
provenance [78]. 

Miller also identified how explanations are used in social 
contexts [79]. To accommodate this, we could extend our 
framework to consider social aspect of explanation, such as 
argumentation, explanation as cooperative conversation, 
and dialog [79]. Recent XAI techniques of rationalization or 
verbalizing explanations by mimicking human generated 
explanations may be relevant to supporting these social 
goals (e.g., [26, 62, 89]). 

While AI is often used for decision support, deep learning 
models are being developed primarily for pattern 
recognition from unstructured data. Essentially, these 
would serve as intelligent sensors and perform functions, 
like labeling and counting objects in an image, or 
recognizing unambiguous human activities (e.g., physical 
activity, fall detection). Much of our framework on 
reasoning and decision making may not be relevant for 
such applications, where users may only seek model 
transparency and scrutability to debug the model “sensor”. 

Generalization and extensibility. Our framework provides a 
starting point to learn how to choose XAI features based on 
human reasoning. It can be extended by adding specific 
components to different modules (Section 4.5). For example, 
we can consider theories of social comparison [31] for 
health behavior change and connect that with XAI to show 
prototypes of other users of a fitness app. The user may be 
persuaded to increase their physical activity if she sees a 
prototype explanation of users who achieved a health goal. 
Seeing a counterfactual explanation highlighting the 
contrast between those prototypes and the user self can 
allow the user to see what specific lifestyle changes she 
may have to make. 

8 CONCLUSION 

We have described a theory-driven conceptual framework 
for designing explainable facilities by drawing from 
philosophy, cognitive psychology and artificial intelligence 
to develop user-centric explainable AI (XAI). Using this 
framework, we can identify pathways for how specific 
explanations can be useful, how certain reasoning methods 
fail due to cognitive biases, and how to apply different 
elements of XAI to mitigate these failures. By articulating a 
detailed design space of technical features of XAI and 
connecting them with requirements of human reasoning, 
we aim to help developers build more user-centric explain-
able AI-based systems.   
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