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ABSTRACT 

Context-aware applications are increasingly complex and 

autonomous, and research has indicated that explanations 

can help users better understand and ultimately trust their 

autonomous behavior. However, it is still unclear how to 

effectively present and provide these explanations. This 

work builds on previous work to make context-aware 

applications intelligible by supporting a suite of 

explanations using eight question types (e.g., Why, Why 

Not, What If). We present a formative study on design and 

usability issues for making an intelligible real-world, 

mobile context-aware application, focusing on the use of 

intelligibility for the mobile contexts of availability, place, 

motion, and sound activity. We discuss design strategies 

that we considered, findings of explanation use, and design 

recommendations to make intelligibility more usable. 
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INTRODUCTION 

Context-aware applications make use of sensed inputs and 

contexts, coupled with intelligent decision-making to 

automatically and calmly adapt to serve users [4]. However, 

much of the context sensing is done invisibly [19], and 

context inference is growing increasingly complex (using 

large rule-sets, hidden Markov models, etc.). Lay users may 

not understand how these applications make their decisions, 

let alone be aware when decisions are made and actions are 

taken. This can lead to user frustration and loss of trust in 

the applications [14]. To counter this, context-aware 

applications should be intelligible (also called transparent, 

comprehensible, scrutable) by providing explanations of 

their behavior [1, 5, 10, 11]. 

Indeed, there have already been several context-aware 

applications that support some level of intelligibility. 

Cheverst et al.'s Intelligent Office System [2] exposes 

sensor values, and explains its fuzzy decision tree model 

that controls office appliances. Tullio et al.'s interruptibility 

displays [16] explain how they determine a manager's 

interruptibility by exposing the values of sensors in the 

manager's room. Kuleza et al. built an email sorting 

application [7] that supports Why (i.e., why the application 

took a particular action) and Why Not (i.e., why the 

application did not take a different action) explanations for 

its naïve Bayes classifier. Vermeulen et al.'s 

PervasiveCrystal [17] also supports Why and Why Not 

explanations but for ambient environments. These systems 

support a limited set of explanations users can ask for: 

What, Input values, Why, and Why Not. However, Lim & 

Dey [10] found that users ask a wider range of questions of 

context-aware applications, and that different explanations 

have different impacts on user understanding [9].  

To support this wider range of explanations for context-

aware applications, the Intelligibility Toolkit [11] was 

developed to automatically generate eight question type 

explanations: What, Why, Why Not, How To, What If, 

Inputs, Outputs, and Certainty. While this significantly 

helps facilitate the development of intelligible context-

aware applications, it is unclear how to effectively present 

these explanations. We advance the knowledge of how to 

design for intelligibility by investigating explanation design 

for a real-world, mobile context-aware prototype. In this 

work, we focused on intelligibility for the mobile contexts 

of availability, place, motion, and sound activity. 

Our contributions are the: 

1. Exploration of design and usability issues in making a 

context-aware application intelligible, and  

2. Provision of design recommendations to address them. 

The rest of the paper is organized as follows: we describe 

the prototype that we developed to be intelligible. We then 

describe our rationale for designing the explanations to 

make them more interpretable. To discover how users use 

intelligibility and the usability issues that they face, we ran 

an in-situ, scenario-driven, think-aloud study. We describe 

our experimental set up, method and data analysis. We then 

describe how our participants used explanations, and 

discuss our interpretations of some factors influencing their 

behavior. We observed how participants used explanations 

differently depending on their goals, and how some 

participants encountered difficulties due to their lack of 

prior knowledge or their chosen problem solving strategies. 

Finally, we provide design recommendations arising from 

these observations, and describe our plans for future work. 
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LAΚSA ― SOCIAL AWARENESS APPLICATION 

Staying aware of others is an established need that people 

have [15]. Between close friends and family members, this 

can help people feel a greater sense of connectedness as 

each person goes about their daily activities. Between 

coworkers, this can inform people of the most suitable 

times to contact them. We have developed Laκsa, a mobile 

application that shares people‘s availability status. Laκsa is 

an acronym for Location, Activity, Connectivity (κ), and 

Social Awareness that describe its function. Availability is 

determined from six lower-level contexts: Place, Motion, 

Sound activity, phone Ringer, Schedule, and who is 

enquiring (Contactor). While similar to CenseMe [13], it 

uses a slightly different set of contexts, aggregates them 

into an availability context through rules (rather than just 

showing all contexts as presence information), and is 

intelligible, such that it can explain its complex behavior. 

Our focus in this paper is the use of Laκsa as a vehicle to 

explore the design, implementation, and use of 

intelligibility in a sophisticated, multi-factor context-aware 

application. In the rest of this section, we shall describe the 

various contexts that Laκsa employs, briefly describing 

their implementation. Laκsa is designed to support the 

complexities of availability in social relations by 

considering availability as multi-faceted, and multi-

factored. One's availability depends on who is asking 

(different facet for different viewer), and on contextual 

factors (e.g., Place, Motion, Sound). Figure 1 describes 

Laκsa's context hierarchy. We designed Laκsa to be 

sophisticated in using many contexts, and complex sensing 

and inference mechanisms, to exemplify how context-aware 

applications can manage many factors that users would find 

cognitively difficult. We anticipate users will ask for 

explanations to determine or remember Laκsa's complex 

mechanisms. Next we describe the contexts Laκsa models. 

Availability: Available, Semi-Available, Unavailable — is 

determined based on rules regarding the following six 

factors. The contactor interprets the availability and decides 

whether to contact and how (call, text, email, etc.). 

Contactor (Who is Enquiring): Family, Friend, 

Coworker, and Default (to check user's default status) — 

categorizes person contacting or enquiring about the user. 

Place:  Home, Office, Café, Library, etc. — represents the 

semantic location of the user. It is computed by sensing 

latitude and longitude from the Skyhook Wi-Fi API (uses a 

hybrid GPS, Wi-Fi, and cell tower positioning algorithm), 

and matching to a pre-determined named location that the 

user specifies. To convey accuracy, it also reports the 

sensed distance error and detected number of access points. 

Motion: Sitting, Walking, Cycling, Placing the phone Flat, 

etc. — represents the user‘s physical activity inferred with 

the phone placed in a front pants pocket. Inferences are 

made with a decision tree trained using activities from 

several users. Features extracted from the accelerometer are 

similar to [8]: e.g., mean and standard deviation for three 

axes, phone orientation angles, and signal powers.  

Sound: Talking, Music, and Ambient Noise — represents 

the sound activity that Laκsa recognizes from what it can  

hear from the phone's microphone. Inferences come from a 

naïve Bayes classifier trained on sound samples. Features 

extracted are similar to [12]: e.g., mean and standard 

deviation of power, low-energy frame rate, spectral flux, 

spectral entropy, spectral centroid, bandwidth, Mel-

Frequency Cepstral Coefficients (MFCCs). 

Phone Ringer: Silent, Vibration, or Normal. 

Calendar Schedule: Personal, Work, or Unscheduled. 

While one could compare the use of explanations for 

different contexts (e.g., Place, Motion, Sound) and different 

decision models (rules, decision trees, naïve Bayes), for this 

formative work, we focus on exploring the design and use 

of explanations across this breadth of factors. 

DESIGN OF INTELLIGIBILITY 

Having defined the context types, we seek to make Laκsa 

intelligible so that users can understand what it knows and 

how it makes decisions about user availability. We employ 

explanations supported by the Intelligibility Toolkit [11]: 

1. What is the value of the context? 

2. Why is this context inferred as the current value? 

3. Why Not: why isn‘t this context inferred as Y, instead?  

4. How To: when would this context take value Y? 

5. Inputs: what details affect this context? (Factors, input 

features, related details, etc.) 

6. Outputs: what other values can this context take? 

7. What if the conditions are different, what would this 

context be? (Requires user manipulation) 

8. Certainty: how confident is Laκsa of this value? 

9. Description: meaning of the context terms and values. 

Explanations generated from the Intelligibility Toolkit 

contain the information content to answer these nine 

questions and can be rendered using simple text templates. 

However, these may not be easy for lay users to interpret or 

quickly assimilate. Therefore, we employed several design 

strategies to help make the explanations more usable. 

Figure 2 and Figure 3 show some explanation UIs resulting 

from the strategies described next. 

Reducing and Aggregating Explanations 

We expect that users of context-aware applications would 

rather be focused on their day-to-day tasks than dedicate 

too much attention to technical details. Hence, it is 

important to simplify and reduce the provided explanations 

to be concise and salient. We have done this for Laκsa by 

aggregating explanation types (e.g., What value and 

  
Figure 1. Laκsa context architecture with different tiers of 

context used to infer higher-level tiers. The user sees the 

Availability status, and the intelligibility explanations. 
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GPS, Wi-Fi, Accelerometer,  Microphone, 

Phone State, Calendar, etc.



Certainty rating shown together), reducing the number of 

reasons, length of reasons, and number of input features 

(e.g., omitting MFCCs for sound); and combining 

explanations for simultaneous consumption (e.g., presenting 

x-y-z accelerometer values in 2D diagrams). While this 

may compromise comprehensiveness, it is intended to make 

the explanations more interpretable.  

Visualizing Explanations 

Users should more quickly assimilate visual explanations 

because of the higher bandwidth of diagrams [18]. Hence, 

we provide several visual representations: icons for context 

and feature values, dynamic diagrams that change when 

values change, and even animation and sound (to hear 

pitches and pitch ranges). Visualizations are customized for 

the context domains (e.g., map for Place, physical 2D 

phone diagram for Motion). Since Sound is not visual, we 

chose to explain sound by metaphor (e.g., showing a pan 

flute to represent pitches and ranges; see Figure 3c). 

Explaining in Simple and Relatable Terms 

As we deploy intelligibility in real-world prototypes, users 

need to understand how the contexts and recognition 

features relate to the real world, using lay concepts. 

Therefore, we simplify names (e.g., "spectral entropy" 

renamed to "pitch pureness", "low-energy frame rate" 

renamed to "periods of silence"), normalize numerical 

values to lay scales (e.g., 0 to 100), and include Description 

  

(a) 

This is the core information to show the Availability status that Laκsa has 

inferred. It shows the user or buddy‘s picture, name, and Availability status. It 
also shows the time since the last change.  

  
(b) 

To ask for an explanation, first select which context you would like to ask 

about by selecting one of these seven Context Tabs. Each tab shows the 

current value of the context (What explanation), e.g., Sound = Talking.  

  
(c) 

Next, you ask a specific question from the drop-down menu. The Question 

Panel adapts to the question selected (e.g., Why, Why Not, What If).  

  

(d) 

The resulting explanation is rendered in the Explanation Panel.   
List visualization: the left screenshot shows a reason with a list of multiple 
factors. Some explanations have multiple alternative reasons, shown in 

different sub-tabs. 

Figure 2. Screenshot of the Laκsa showing how to use the components in the core and intelligibility user interface. 

 

(a) Map visualization explaining with 'bubble' components. Blue bubble indicates 

estimate of current location; green dotted bubble indicates specified region of named 

location.  

Why is my Place inferred as "Office"? Because your estimated location bubble 

overlaps with the bubble specifying where Office is. 

 

(b) Physical Diagram visualization illustrating the interpreted mechanical motion of 

the phone leading to its inference of cycling (two shown here). Dotted lines and 

arrows or shading show boundary conditions of rules of the decision tree model. Users 
can mouse over the diagram to see textual explanations with numerical values. 

Why isn't Motion inferred as "Cycling"? Because the phone is oriented more than 

the drawn angle, the vigorousness detected is below the illustrated value, etc.  

 

(c) Metaphorical visualization of sound feature values that was sensed and computed 

at a specified moment (two shown here). This can show current values sensed, or 

average values for each possible outcome. 

What details (Inputs) affected the Sound inference? 48% of the sound heard was 

relatively silent (Periods of Silence); the range of pitches heard was from 1140 to 

2623Hz (this can be played aurally for the user to listen to), etc. 

 

(d) Weights of Evidence visualization. Bar chart visualization showing weights of 

evidence voting for or against the inference of Talking. Weights are represented by the 

length of each bar; color and positioning indicate evidence for or against. Not all 
factors shown.  

Why isn't Sound inferred as "Talking"? Because most of the factors vote for the 

inference of Music (especially hidden features, the sound Volume, Periods of Silence, 
etc); only Pitch Fluctuation votes for Talking. 

Figure 3. Explanation Visualizations rendered in the explanation panel. Some examples and their interpretations. The UI uses icons 

derived from http://www.fatcow.com/free-icons. 

 

The location is 142 meters 
from Office



explanations that describe what each context factor and 

feature mean. Descriptions are presented in physical rather 

than system terms (e.g., there are more periods of silence 

for talking than ambient noise, because there are significant 

pauses in speech that are relatively quiet). Furthermore, 

features for Motion and Sound were scaled to physically 

meaningful names and values (e.g., vigorousness to 

represent accelerometer signal power in Watts). We also 

chose to visualize explanations for motion using first 

principles. For example, orientation information is shown 

as the orientation of the phone relative to the ground (see 

Figure 3b). Note that ensuring that terms are domain 

relatable may require significant domain knowledge, rather 

than just naïvely applying effective features identified in the 

literature about activity recognition (e.g., [8, 12]). 

Providing Explanations for Control 

We chose to provide explanation types for each context 

only if users could leverage the information to improve 

Laκsa, or change their behavior. What If explanations are 

only provided for the top-tier Availability context. For other 

contexts, users would not be able to meaningfully change 

the input features (e.g., changing the entropy or frequency 

to influence sound). Furthermore, we omit trivial 

explanations, e.g., asking What If one is at a specific 

coordinate location to learn which semantic place Laκsa 

would infer the user being at; asking Why Not questions 

about manually set contexts (e.g., schedule or ringer mode). 

We iterated on the design of Laκsa with these strategies and 

feedback from colleagues who are active HCI researchers. 

LAΚSA PROTOTYPE IMPLEMENTATION 

We built Laκsa using a client-server architecture. Sensing 

of low-level contexts (e.g., latitude, longitude coordinates, 

accelerometer, microphone) was performed on an Android 

mobile phone, and some intermediate features (e.g., discrete 

Fourier transform, entropy, energy) were computed on the 

phone. The extracted features are then sent via XMPP to a 

server for further processing. On the server, we modeled the 

contexts for users with the Enactor framework [5], and used 

the Intelligibility Toolkit [11] to support the querying for 

various questions, generation and reduction of explanations 

about the contexts, and presentation of the explanations in 

various graphical and textual formats.  

To measure how participants use the Laκsa interface, and to 

support rapid prototyping, we developed the interface on a 

touch screen tablet, rather than on the mobile phone. Users 

interact with the UI with a mouse, pen stylus, or finger. The 

latter interaction closely resembles cell phone interaction.  

LAΚSA PROTOTYPE USAGE 

Users ask for explanations by selecting a question from the 

drop down menu (see Figure 2a). Each question only 

pertains to the particular context of focus (e.g., 

Availability). To ask about another context, the user selects 

the context by its tab (Figure 2b), and asks the questions in 

the panel (Figure 2c). The resulting explanation appears in 

the Explanation Panel (Figure 2d; Figure 3; Table 1). 

SCENARIO-DRIVEN THINK ALOUD USER STUDY 

To explore the use of the intelligibility features in Laκsa, 

we conducted a scenario-driven user study where 

participants think aloud as they used it. This was an 

exploratory study where we investigated how and why 

participants used intelligibility, and how this use impacts 

their understanding of Laκsa. We conducted an in-situ 

controlled study rather than a field deployment for two 

main reasons: (i) to present participants with a lower-

fidelity interface to elicit more feedback from the think 

aloud study, and (ii) to avoid having serious usability issues 

that could confound results in a field study, where it would 

also be harder to monitor participants' usage and rationale.  

Procedure 

The experiment began with the first scenario (see later) as a 

training session, where the experimenter explained the 

 
Table 1. Explanation Visualization Types for each context, and question type. Only the What value is shown for Ringer, Schedule, 

and Contactor. Note that Certainty is shown together with both What and Outputs, i.e. users can see the certainty the current and 

alternative outcomes, respectively. Visualization types described in Figure 2 and Figure 3. 

Description / Function Availability Place Motion Sound

What Shows current value / state of context. Value
Map

(user‘s location bubble)
Value Value

Why
Shows a model-based explanation  of how Laκsa

inferred the current output value (outcome).
List

(multiple conditions)

Map
(user & actual place 

bubbles overlapping)

Physical Diagram 
(with boundary 

conditions)

Weights of Evidence

Why Not
Shows a model-based explanation distinguishing how 

Laκsa did not infer the alternative output value.
Multiple Lists

(multiple conditions)

Map
(user & desired place 

bubbles separated)

Physical Diagram 
(with boundary 

conditions)

Weights of Evidence

How To
Shows a model-based explanation of how Laκsa

typically or generally infers the target output value.
List

(required conditions)

Map
(actual place bubble)

Physical Diagram
(of average input values 

for desired outcome)

Metaphorical Viz
(of average input values 

for desired outcome)

Inputs Shows the current values of input  context / features.
List

(current input values)

List
(latitude, longitude)

Physical Diagram
(of current input values)

Metaphorical Viz
(of current input values)

Outputs Shows possible output values the context may take. List (possible output values)

What If
Shows a UI to allow the user to specify different input 

values and see what the output value would be.
Editable List

(of current input values)

Certainty
Shows the certainty or confidence of Laκsa ‗s 

inference of the current context value.

List
(distance error, number 

of access points)

% Certainty
(of inference)

% Certainty
(of inference)

Desc. Shows terminology or description of context / feature. Text (sentences)



function of the Laκsa prototype as an availability awareness 

application, its sensing capabilities, and its intelligibility 

features. Participants verified that they understood the 

interface and explanations by stepping through the interface 

themselves and thinking aloud what they understood Each 

subsequent scenario involved participants moving around 

the university campus to a respective location (e.g., library, 

café, office) and engaging in a specific activity (e.g., 

walking, cycling). The experimenter shadowed the 

participant all the while. The participants were then told of 

an incident (e.g., having your phone ring loudly while 

searching for a book in the library) and the phone's 

subsequent behavior. They were asked for their opinion of 

the situation, and of the behavior of the application. They 

were then asked to explore Laκsa to find out what is really 

happening or to clarify the situation. The participants were 

prompted to think aloud as they did this, and the 

experimenter probed for clarification. For each scenario, we 

recorded what participants did and said during the think 

aloud. Finally, we interviewed them about their opinion and 

understanding of how Laκsa sensed and inferred contexts.  

Controlled In-Situ Scenarios 

The user study was scenario-driven to expose participants 

to a wide range of situations they may encounter with 

Laκsa. To increase the visceral quality of the scenarios, we 

engaged the participants in actually physically performing 

the tasks in-situ, rather than just imagining themselves in 

the respective environments and situations. For example, 

we had participants go into a library to look for a book (S4 

below), and ride a stationary bicycle  (S5). To better control 

conditions, we simulated the sensor data that Laκsa used for 

each scenario. The data is based on previously recorded real 

data of several users performing the respective scenarios. 

We asked participants to wear pants with front pockets to 

facilitate placing the mobile there and to allow comfortable 

cycling. To further control for experience, we provided 

participants with a fixed set of personal availability rules (6 

rules specifying availability as Unavailable and Semi, and 

any other case as Available; e.g., if the user is in her office 

and Laκsa hears talking, then she is seen as Unavailable). 

We employed seven scenarios to span three situational 

dimensions: (i) Exploration / Verification (S1, S2, S5) 

where Laκsa behaved appropriately and participants are 

asked to explore and verify the interface; (ii) Fault Finding 

(S3, S4, S7) where Laκsa apparently or actually behaved 

inappropriately, and participants had to debug what really 

happened; (iii) Social Awareness (S6, S7) where 

participants investigated information and explanations 

about hypothetical buddies that they naturally had less 

awareness of. We measured their desire to contact their 

buddy in the latter scenarios to gauge their trust of Laκsa. 

S1: Sitting in office talking. Training session where the 

participant learned Laκsa‘s core features and explanations.  

S2: Walking outdoors. Verification/exploration task where 

participants investigated explanations of Place and Motion.  

S3: Missed contact. The participant was asked to find out 

why she was considered not available to a friend, even 

though she was. This is a false-positive error condition 

where Laκsa actually behaved correctly, but given that 

availability is multi-faceted (i.e. different statuses to 

different viewers), the participant may not realize this. 

S4: Library interruption. The participant walked to a 

nearby library to search for a specific book. She needed to 

squat to retrieve the book on the lowest shelf. As she was 

looking for the book, the phone rang (the experimenter 

invoked a ringtone in the library), indicating a call from a 

coworker. The participant was asked to determine why she 

was not seen as unavailable. This is a true-positive error 

condition where we simulated Laκsa making a mistake.  

S5: Cycling in gym. Exploration task for participants to 

explore how Laκsa tracks their cycling in a gym location.  

S6: Friend available. The participant was asked to check 

Laκsa to help decide whether to contact a friend. 

S7: Friend talking inferred as music. The participant was 

asked to find out why, when the friend was actually in a 

meeting, Laκsa made the error of telling her that the friend 

was Available, at the office listening to music, and had 

nothing scheduled. 

Participants 

Using a local recruiting website, we recruited 13 

participants (8 females) with a mean age of 26.4 years 

(range: 18 to 37). P2 was dropped because he did not 

continue beyond the training scenario. Four participants 

were students (one undergraduate). Only P1 was trained in 

a computer-related field (information systems), while the 

others spanned a wide range of areas (e.g., rehabilitation, 

mathematics, materials science & engineering, human 

resources). We engaged each participant for 2.5 hours on 

average (range: 2 to 3.5). Due to the length of each 

scenario, each participant experienced between 3 and 6 

scenarios (median=4), selected to try to balance coverage. 

Participants were compensated $10/hr. 

DATA ANALYSIS 

We transcribed the think aloud and interview data, 

segmented by speaker (interviewer / interviewee). The 

 
Table 2. Participant results in scenarios showing how each 

participant performed for each scenario as he or she used 

explanations provided in Laκsa. Note that columns are not 

arranged in categories, not by sequence of presentation. 

Exploration / 

Verification
Fault Finding

Social Awareness

P1 P13

P3 P1

P3 P3 P4 P4

P1 P1 P6 P7

P9 P5 P4 P7 P8

P5 P6 P3 P8 P12

P6 P7 P6 P10 P5 P5

P11 P9 P8 P5 P11 P6

P13 P12 P12 P7 P13 P10

S2
Walking 

Outdoors

S5
Cycling in 

Gym

S7
Talking as 

Music

S6
Friend 

Available

S3
Missed 

Contact

S4
Library 

Interruption

Gave up / Failed

Misunderstood

Struggled to understand

Effectively understands



transcript was coded by question type (e.g., Why, Why Not, 

What If), goal / intention / rationale (verified during 

interviews), feature requests, breakdowns / struggles (e.g., 

too many questions to choose from), and extent of 

(mis)understanding. We formed sequence models of the 

usage of question types, and consolidated them (e.g., see 

Figure 4). We interpreted the findings and models to 

identified causal factors. This was assembled into higher-

level themes using an affinity diagram (selection based on 

theme convergence, importance, and novelty).  

Next, we describe our observations of how participants 

used Laκsa, focusing on how they asked for various 

explanation types. Table 2 summarizes how much 

participants understood Laκsa's inference in each scenario. 

PATTERNS OF INTELLIGIBILITY USE 

We found different usage of explanations for the three 

different situational dimensions presented in the scenarios: 

exploration/verification, social awareness, and fault finding. 

Exploration / Verification 

We observed that participants explored all explanation 

types as they tried to learn how Laκsa functioned, and more 

about the scenarios. Naturally, participants used the 

Description explanations to remind them what the terms 

and concepts meant, and used the Inputs explanation to 

examine deeper states that affect inferences (e.g., for S3, 

P11 used the Inputs explanation of Availability to see a 

―summary of her statuses‖). How To explanations were 

used in two ways: P11 appreciated learning new concepts 

about inferring Sound (through periods of silence, pitch 

ranges, etc.); for S3, P6 checked to see when she would be 

Unavailable.  Finally, some participants asked What If to 

preemptively test troublesome or critical situations to see 

how Laκsa would respond under those circumstances; e.g., 

for S3 during a lull period, P3 and P5 confirmed that they 

remained available to family members in an emergency. 

Social Awareness 

For S6 and S7, participants had less first-hand knowledge 

of the actual situation about their buddy than about 

themselves. We observed that they mainly focused on the 

Input explanation of Availability (or equivalently, What 

explanations of the lower-level contexts). For example, P6 

first checked the Input values of Availability to determine 

the state of her friend (in S7). Participants would then form 

stories about what they believed their buddy could be doing 

at the time; e.g., having seen the Motion inferred as ―Other‖ 

(placed flat) for S6, P9 presumed his friend was ―probably 

sleeping or taking a nap or eating or something that would 

probably involve not wanting a phone call.‖ When he 

subsequently looked at the Sound inference, he said ―sound 

is 78%, oh he is listening to music, so I guess I could 

intrude if I want to, but then I get he might be with someone 

else too.‖ At this point, most participants did not continue 

by asking other questions. However, for S6, P7 asked When 

would her friend be Semi-Available (How To) to learn the 

rules her friend had set. 

We found that once participants perceived that the 

availability status was inferred inaccurately or erroneously, 

they explored other questions and investigated more deeply. 

This is similar to how participants investigated anomalies 

with explanations about themselves (discussed next). 

Fault Finding 

Participants used explanations most when perceiving that 

Laκsa behaved unexpectedly. Figure 4 summarizes the 

sequences of how participants asked for various 

explanations (labels refer to observations described in the 

following text). The choices of questions were slightly 

different when investigating the top-tier Availability than 

the lower-tier contexts (Place, Motion, & Sound). 

Top-tier, Rule-based Availability 

When participants realized that the Availability was wrong, 

some instinctively first selected the Why question (Figure 4: 

1). P6 first asked why about her Availability in S3 and S4, 

and why her Place was inferred as Office in S4. When 

explaining her rationale to first select why (S4), P12 said 

"because I want to know why…why I'm available." This 

suggests a linguistic cue for asking Why first. 

Alternatively, sometimes participants first inspected the 

state of the application by asking for Input values (2). For 

S3, by examining the Input values, P11 discovered that ―the 

Talking and possibly the Work [category] in the schedule 

[were] the two that led my status to be unavailable.‖ For S4, 

P6 and P12 quickly discovered that the Place inference (as 

Office) was erroneous (should be Library instead).  

If participants had an expectation of what the availability 

should be, they would ask about the expected outcome 

using Why Not or How To questions (3a, 3b). These 

represent different strategies to address this goal-oriented 

query. Interestingly, some participants asked How To 

instead of Why Not, even though the latter was more 

concise; e.g., for S4, P7 asked When would status be Semi-

Available (How To) to manually identify erroneous 

conditions out of three. Had she asked ―Why isn‘t status 

Semi-Available‖, she would have seen the single condition 

that was specifically identified to be relevant to the 

scenario. Unfortunately, some participants misunderstood 

the How To explanation, e.g., for S7, when P4 asked 

―When would Sound be Unavailable,‖ he interpreted the 

requirement that his friend has to be Talking to represent 

that his friend was currently sensed as talking; for S4, P7 

examined the rules for when she would be Semi-Available 

(as she had expected status to be), found the condition Place 

= Library, and misunderstood that to mean that Laκsa had 

correctly inferred her location. Another reason for the lack 

of use of Why Not could be that the explanations with 

contrapositives put off users from using Why Not more: P6 

complained about the ―excessive use of negatives.‖  

Some participants simulated conditions they expected to be 

true with the What If explanation (4), to see if Laκsa would 

infer an expected Availability. For S4, P8 asked What If, 



setting Place to Library (which she believed to be ground 

truth), and Ringer to Silent (which she believed she should 

have set). This resulted in the status of Semi-Available, 

which was correct unlike the actual inference of Available, 

and indicated that while the rule was executed correctly, 

possibly something was sensed wrongly. Unfortunately, 

participants were prone to carelessness: while setting up the 

expected state for S2, P6 changed three contexts (Place = 

Café, Motion = Sitting, Contacter = Friends), but failed to 

notice her schedule was set to Work (a pivotal factor to 

determine her status to friends). She expected her status to 

appear as Available, but it appeared as Unavailable instead; 

for S4, P13 forgot to set Place to Library (left as inferred 

value Office) when trying to verify the inferred availability. 

Using the aforementioned strategies, some participants may 

decide to add a new rule or modify one to fix the anomaly, 

and this may be a satisfactory solution. However, most of 

the problems in the scenarios are due to faults at the lower-

tier context inference. To investigate further, they would 

select the suspect context by clicking on the respective tab. 

Lower-tier, Sensed / Inferred Contexts 

Once again, participants instinctively asked Why (5): e.g., 

for S2, P9 asked Why to see ―that map thing,‖ the Map 

visualization showing which place his location overlapped 

with; for S2, P6 asked Why Motion was inferred as 

Walking, only paying attention to which features were 

listed, and not paying attention to the boundary conditions; 

for S3, P6 first asked Why Sound was inferred as Talking, 

but found that unhelpful.  

Participants also paid attention to the inference Certainty 

(6). For S6, after noting a Sound certainty of 73%, P10 

mentioned that as long as it was above 50%, that was ―good 

enough.‖ For S7, P12 accepted the inference for Sound as 

Music (93% certainty), because it was above 90%. 

Subsequently, he was confused when this inference turned 

out to be wrong. When in doubt of the current inference, 

some participants also made it a point to find out which 

other Output values were plausible through their Certainties 

(7); e.g., for S6, P6 checked the certainty of inferring Sound 

as Talking (8%), grew wary that the actual inference (Music 

at 73%) may be wrong, and became hesitant to contact his 

buddy. For S4, P12 wanted to see whether Laκsa 

recognized squatting, and seeing Certainties of 67% for 

Standing and 33% for Cycling, he accepted that ―cycling is 

kind of like squatting‖ and ―partially standing.‖ 

When asking about an expected outcome or exploring an 

alternative outcome with a noticeably high certainty, 

participants similarly demonstrated two dominant 

exploration strategies: asking Why Not (8a), or How To 

together with Inputs (8b). Asking Why Not provides a 

concise explanation that directly compares the actual 

inference with the desired outcome. For S4, immediately 

after noticing a wrong Place inference, P5, P6, P12 asked 

Why Not to see why their location bubble did not overlap 

with the bubble for Library. For S5, P5 used the Why Not 

Physical Diagram to explore how Running was not inferred 

(Cycling was). For S7, P6 became uncertain after noticing, 

from the Weights of Evidence visualization, that Pitch 

Fluctuation strongly voted for inferring that her friend was 

Talking, while every other factor voted for Listening to 

Music (see Figure 3d). However, we found that many 

participants disliked the explanations as being too technical, 

particularly, the Physical Diagrams for Motion. In fact, for 

S5, focused on Cycling, P7 avoided the Motion diagrams of 

the Input, Why, and Why Not explanations. For S6, P9 

found the Weights of Evidence visualization explaining 

―Why isn‘t (Why Not) Sound Ambient Noise‖ confusing 

(difficult to remember what icons meant), and preferred to 

just look at the Output Certainty of Ambient Noise. Other 

participants alternatively used the How To explanation in 

conjunction with Inputs, by manually comparing the two 

explanations; e.g., for S6, P9 repeatedly toggled between 

the How To and Inputs metaphorical diagrams for Sound. 

He studied Pitch Pureness to see if the current Input value 

(=29) was ―just about right‖ compared to the average value 

for Music (=34), and accepted the Sound inference of 

Music. After several exposures to both techniques, P12 

realized (in S5) that the Why Not explanation for Motion 

provided similar information as How To + Inputs, and 

required less effort to inspect. 

THEMES OF INTELLIGIBILITY USE 

We created an affinity diagram of our coded findings to 

map out core issues and patterns of use. Here, we present 

Top-tier  

Rule-based Context 

(Availability) 

Lower-tier  

Sensed / Inferred Contexts 

(Place, Motion, & Sound) 

 

 

Figure 4. Consolidated sequence models of explanation use for 

fault finding. Participants chose different question type 

explanations and in different sequences. ‘?’ indicates 

participant desire to ask questions; arrows indicate transitions 

of using each explanation; only prominent behavior is noted. 
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the top three high-level themes of how, and why 

participants used or failed to use the intelligibility features.  

Information Overload and Explanation Detail 

While we intend explanations to express a comprehensive 

view of what Laκsa knows and how it infers, we run into 

the problem of information overload. Comprehensive 

explanations are too long and complicated for end-users. 

Even though we took several steps to reduce the 

explanation complexity, participants still complained about 

the remaining complexity. P1 pointed out (as expected) that 

there were too many questions to choose from, and she did 

not necessarily know which was best for her goals. P3, P7, 

P8, and P9 also complained about the large number of 

reasons provided for Availability explanations (up to 9), 

and the large number of Input features described for Motion 

and Sound. In fact, P3 suggested showing up to 3-4 reasons, 

most participants only paid attention to 1-3 features of 

Motion (especially just vigorousness and movement), and 

Sound (periods of silence, pitch range, pitch pureness). 

When trying to determine her friend‘s availability for S6, 

P10 grew tired of asking for explanations. She felt ―like it 

was information overload,‖ and that she ―started getting 

less information about what he was doing.‖ She started 

doubting whether her friend was actually listening to music 

or sleeping instead. Clearly, our lay users did not want a lot 

of explanation detail.  

Furthermore, participants preferred Certainty explanations 

because of its single value (e.g., P9). Similarly, P12 

eventually showed a preference for the more concise Why 

Not instead of How To explanation for explaining Sound. 

While participants found the Motion and Sound Input 

feature details interesting, they also found them too 

technical for such a lay-user application (e.g., P3, P7).  

Prior Knowledge and Relatability 

It is well-known that prior knowledge plays a role in 

learning and understanding, and we observed how that 

influenced how participants used and interpreted 

explanations. For example, since Laκsa uses access points 

to sense location, the geographical distribution of these 

points affects the inferred location, and the distance error. 

However, P4 did not know this, and had no idea in S4 that 

Place was wrongly inferred as not being the Library.  

This problem was more widely manifest in a usability issue: 

some participants wanted to see explanations framed in 

terms relatable to their activity; e.g., for S5, P1 wanted 

Motion vigorousness to be stated as ―within the walking or 

running range‖ or in terms of exercise "high or low 

intensity". She found forces and orientation unhelpful to 

understand her exercise. While this can clearly help users in 

making sense of input values, this is less feasible if an input 

has multiple ranges of values for certain outcomes (e.g., 

multiple ranges of orientation angles for sitting due to 

different resting angles of the phone in a pocket).  

The participants' use of Inputs and How To explanations for 

a comparative method to derive a Why Not explanation also 

suggests this need to frame sensor features in terms of well-

understood activities. For S7, to convince themselves that a 

sound heard was really talking, participants looked at the 

feature values in Inputs (representing the current state), and 

values typical of Talking (found by asking How To).  

Different Strategies in Problem Solving 

We observed that some participants employed suboptimal 

problem solving strategies to try to determine how Laκsa 

made inferences. We observed a lack of strategy and logical 

fallacies such as causal oversimplification. Even when 

provided with various explanation tools, some participants 

did not know how to effectively use them. For S2, P11 

sequentially explored questions in the drop-down list of 

questions, while others (e.g., P6, P12) chose the Why 

explanation instinctively. Many participants also asked How 

To to get a Why Not explanation. This required them to do 

manual work to identify which reason was relevant, when 

Why Not would have automatically selected it. 

Participants also exhibited common logical fallacies. Many 

participants exhibited causal oversimplification [3], because 

as they looked at reasons (e.g., from Why, Why Not), they 

mistakenly fixated on a single factor and ignored others. P6 

and P11 felt that Schedule was the ―explicit way‖ of saying 

whether they were available (S2). P4 thought that since his 

friend was at the office (S7), then he must be Unavailable, 

even though he also would have needed to be talking. 

Having formed this wrong belief that his friend must be 

busy, P4 persisted in looking for clues to verify his 

hypothesis, rather than revise it. He was thus unable to 

identify the problem without help from the experimenter.  

Blame Shifting 

We observed participants shifting blame attribution in 

several scenarios, particularly, S4 where the participant 

received a loud call while at the library (see Figure 5). 

Participants changed who or what they attributed blame to 

after carefully considering what they knew, and viewing 

Laκsa‘s explanations. Immediately after receiving the 

interruption, P1, P7, P8, P12 reacted instinctively and were 

annoyed with Laκsa (1a), while P6, P13 were self-

judgmental and felt they forgot to silence the ringer 

appropriately (1b). On reflection, P7, and P12 realized their 

coworker should have seen their Place and known not to 

call them. They would then blame their coworker for 

violating social norms (2). After looking at the availability 

status displayed, participants realized Laκsa was indeed 

wrong, and all participants shifted blame to Laκsa (3a, 3b). 

 

Figure 5:  

Blame shifting during S4 

about mistakenly receiving 

a phone call in the library. 
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However, after viewing explanations and finding out that 

the status error was due to a poor location sensing (and both 

Library and Office in tight proximity), participants had 

different reactions. P8 and P12 continued to blame Laκsa 

for its imprecise sensing, and even became harsher in their 

judgment, because they (incorrectly) expected indoor 

location sensing to be as precise as contemporary GPS 

devices (4a). On the other hand, P6, P7, and P13 forgave it 

because they understood how challenging it was to sense 

location in the given circumstance, and understood that they 

would have to change a setting to improve sensitivity (4b). 

This supports findings about reduced blame attribution 

when autonomous robots explain their actions [6]. While 

one might assume explanations improve perception and 

trust of Laκsa, this observation reveals explanations to be a 

double-edged sword: revealing the difficulty of some 

situations, or exposing a lack of competence. 

DESIGN RECOMMENDATIONS FOR INTELLIGIBILITY 

Drawing from our design exploration and user study, we 

present some recommendations on how to improve the 

usability of intelligibility that can be applied more generally 

to context-aware applications. 

Reducing and Aggregating Explanations 

We had originally employed this strategy before the user 

study when designing Laκsa, and found this to be even 

more crucial based on our study results. In fact, participants 

demanded an even lower level of detail, wanting to see 

more details only as needed. Hence we continue to 

recommend this requirement. One compromise would be to 

allow incremental access to more detail on demand and 

offer significantly reduced explanations initially. 

Alternatively, it could be even better to present them in a 

form that is concise but does not compromise by omitting 

any reasons. Finding How To explanations cumbersome 

due to the large number of tabs to see multiple reasons, P1 

suggested just presenting the rules in a table instead. This 

would provide a bird's eye view of the rules and yet be 

much easier to access. Furthermore, because some 

participants found some features for Motion and Sound to 

be overly technical, it may be sufficient to filter them out of 

explanations rather than make them physically meaningful, 

or provide metaphors to explain them. However, it is 

unclear whether users want to see them when encountering 

more serious and esoteric debugging problems.  

Retooling Explanations with Simpler Components 

Several participants (e.g., P6, P9, P13) referred to 

explanations of Place as "the bubble thing" or "map thing" 

instead of noting which question they wanted to ask. They 

used the simple bubble components of Place (Figure 3a) to 

investigate various questions (Figure 6). Therefore, it may 

be better to design simple explanation components that can 

be used to answer multiple questions than to individually 

answer those questions through different automatically 

generated representations: i.e., use explanation components 

with a smaller vocabulary set expressive enough to convey 

most of the explanation types we have employed. 

Unfortunately, it is difficult to design reusable, simple 

explanation components for contexts like motion and 

sound, because they depend on a wider and more diverse 

range of features that may not be represented equivalently. 

Streamlining Questioning 

Aware of her lack of understanding to effectively use the 

explanation questions, P7 suggested a flow chart to help 

guide users to ask optimal questions. We propose the 

streamlined flow of questions as shown in Figure 7, where 

only 1-3 question types are accessible at any given time. 

This helps reduce information overload when choosing 

explanations. Users first start with seeing What the 

application has inferred, along with its Certainty (1). If they 

want to ask questions, they can seek the mechanistic 

rationale by asking Why (2a), explore the system Inputs 

state (2b), or explore the Certainties of alternative Output 

values (2c). If users want to know why an expected or 

alternative output was not inferred, they may ask Why Not 

(3a), compare Inputs with How To (3b). These support the 

two observed why-not strategies. Having observed how 

participants wanted to ask questions from the Laκsa UI, we 

recommend convenient shortcuts: users can ask Why Not 

on seeing alternative Output values (4), and simulate 

different Input values to ask What If (5). Finally, users can 

also explore the values (6a) and Outputs (6b) of lower-tier 

contexts through Inputs and What If, respectively. 

Non-Mechanistic Explanations 

We found that users need more types of explanations to 

properly ground them in the application domain, and to 

educate them about good problem solving and debugging 

strategies to fully understand the program functionality. 

    

Figure 6. Simple "bubble" components simultaneously for 

explaining seven questions about Place. What: Place inferred 

as at place A. Inputs: (Latitude, Longitude) coordinates of 

sensed current user location. Output possibilities: place A, B, 

etc. Why at A: because sensed location bubble overlaps with 

bubble of A. Why Not at B: because sensed location bubble 

does not overlap with B. How To be inferred at B: need 

location and B bubbles to overlap. Certainty of inference: 

distance error and number  of access points. 

Place

A

(Lat, Lon)

Distance Error
(& number of 

access points)

Place

B

 
Figure 7. Streamlined sequence diagram for explanation use. 
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Given the deep knowledge that complex context-aware 

applications rely on to make decisions, and the evidence 

that some participants lacked sufficient prior knowledge to 

relate technical behavior to real-world and domain 

phenomena, we can see that simple textual descriptions are 

not sufficient to scaffold the automatically generated 

explanations. This suggests context-aware applications need 

to have access to information about complex real-world 

concepts that are not necessarily core to the application.  

Moreover, we found that since some users did not 

effectively leverage the explanation facilities provided, 

intelligible applications may need to teach them problem 

solving strategies. One solution may be to provide 

examples of end-user debugging with the explanation tools. 

LIMITATIONS AND FURTHER WORK 

We used an iterative design process where design decisions 

were based on careful consideration, consultation with HCI 

experts, and user feedback. While we believe our designs 

are reasonably interpretable, an alternative approach is to 

make comparisons between competing designs. 

We have limited our study to a manageable set of scenarios, 

chosen to aid exploration of explanation use, rather than to 

comprehensively cover situations. Hence, our results are 

suggestive rather than definitive, and we seek to validate 

them with further design iterations and user studies. 

Our design recommendations are based on studying how 

and why users seek explanations given several goal 

situations. While we expect following them would improve 

the usability and thus usage of explanations, they may not 

be the best to promote understanding. Future work will 

explore how to design and provide explanations that are not 

only easier to interpret, but also effective in improving the 

understanding of how context-aware applications work.  

CONCLUSION 

We have described our first steps to building a real-world, 

intelligible mobile context-aware application. We followed 

several design principles to improve the usability of 

explanations, and conducted a user study to discover how 

users make use of explanations, and issues they 

experienced. Particularly, we investigated the use of 

intelligibility for the mobile contexts of Availability, Place, 

Motion, and Sound activity. Our findings emphasize the 

importance of making explanations usable and quickly 

consumable (by reducing information overload), relating 

the application behavior to the real world activity (to raise 

the relevance of the information), and supporting effective 

problem solving and debugging strategies (so that users can 

quickly understand the application issues before giving up). 

We suggest a need for streamlining explanations while 

maintaining access to the rich explanation capabilities, and 

for integrating domain knowledge in explanations. With a 

better understanding of how users use the question type 

explanations, we can better design explanations to help 

understand sophisticated context-aware applications.  
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