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ABSTRACT 

Context-aware applications should be intelligible so users 

can better understand how they work and improve their 

trust in them. However, providing intelligibility is non-

trivial and requires the developer to understand how to 

generate explanations from application decision models. 

Furthermore, users need different types of explanations and 

this complicates the implementation of intelligibility. We 

have developed the Intelligibility Toolkit that makes it easy 

for application developers to obtain eight types of 

explanations from the most popular decision models of 

context-aware applications. We describe its extensible 

architecture, and the explanation generation algorithms we 

developed. We validate the usefulness of the toolkit with 

three canonical applications that use the toolkit to generate 

explanations for end-users. 
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INTRODUCTION 

Context-aware applications [11] make use of sensed inputs 

and contexts, coupled with intelligent decision-making, in 

order to automatically and calmly [43] adapt to serve users 

better. However, the implicit nature of context sensing, and 

the growing complexity of models (e.g., rules, hidden 

Markov models) underlying context-aware applications 

make it difficult for users to understand them (e.g., [42]). 

This can frustrate users [4], and cause them to lose trust in 

the applications [29]. To counter this, it is important to 

make context-aware applications intelligible [5, 25, 26] by 

automatically providing explanations of application 

behavior. In fact, this has been done in applications from 

other domains (e.g., recommender systems [20], end-user 

debugging [22], user interfaces [30], user modeling [10]), 

and been found to improve user trust and acceptance of 

these applications. 

Several reviews have shown that users desire a wide range 

of explanations (e.g., [17, 23, 26, 27]) and specifically, Lim 

& Dey [25] describe a set of ten explanation types that 

context-aware applications should provide for end-users. 

The already challenging task of generating some 

explanations from applications is made more challenging 

with this requirement for many explanation types. In this 

work, we designed and implemented the Intelligibility 

Toolkit that automatically generates explanations from 

models at the infrastructure level, so application developers 

do not have to derive explanations themselves. 

Our contributions are:  

(1) An architecture for generating a wide range of 

explanations drawn from Lim & Dey [25], including Why, 

Why Not, How To, What, What If, Inputs, Outputs and 

Certainty. Our current implementation extends a popular 

toolkit for building context-aware applications [11, 13] and 

supports the four most popular model types (rules, decision 

trees, naïve Bayes, and hidden Markov models).  

(2) A library of reference implementations of explanation 

generation algorithms we developed to extract any of the 8 

explanation types from any of the four models we support. 

(3) Automated support for the recommendations from 

[25] that promotes good design practice by making the most 

contextually appropriate explanations easy for developers to 

acquire. Applications can automatically obtain the most 

appropriate explanations given the contextual situation. 

As we will show, these contributions satisfy the 

requirements laid out by Olsen for adding value to user 

interface architectures [32]: (i) importance, (ii) problem not 

previously solved, (iii) has generality across a range of 

explanation types and decision model types, (iv) reduces 

solution viscosity through increased flexibility for rapid 

prototyping of explanations, (v) empowers new design 

participants by making it easier to provide explanations, 

and (vi) demonstrates power in combination by supporting 

combinations of explanation types as building blocks. 
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The paper is organized as follows: we review context-aware 

applications published in recent years from a number of 

premier conferences to ascertain the most popular decision 

models. Then we present a discussion of the explanation 

types we seek to provide. Next, we describe the 

Intelligibility Toolkit and how it provides explanations for 

context-aware applications. We detail the explanation 

generation algorithms we developed for the four most 

popular decision models. We validate the toolkit through 

demonstration applications and the application of Olsen’s 

infrastructure guidelines. We then discuss other toolkit 

features that would be valuable to support, and compare the 

toolkit with related work. We end with discussing 

opportunities for new research given the toolkit. 

REVIEW OF DECISION MODELS USED IN CONTEXT-
AWARE COMPUTING 

We sought to learn what the most popular context-aware 

decision models are so that we could support these in the 

Intelligibility Toolkit. We reviewed literature from three 

major conferences over at least five years: CHI 2003-2009, 

Ubicomp 2004-2009, and Pervasive 2004-2009. We found 

that there were four popular models among the 114 context-

aware applications reviewed: rules, decision trees, naïve 

Bayes, and hidden Markov models (see Figure 1). We 

found some use of Support Vector Machines, and clustering 

techniques (e.g, k-Nearest Neighbor), but not substantial. 

Rules: We classify applications as rule-based if the authors 

state that their applications were based on rules (e.g., if/else 

logic), or that they were based on simple mapping 

associations of IDs to entities (e.g., RFID). Developer 

specified rules are the most popular decision models used in 

context-aware applications. They are popular in the 

following domains: activity recognition (e.g., [41]), 

adaptation / personalization (e.g., [40]), awareness / 

monitoring (e.g., [12]), reminders (e.g., [6]), location guides 

(e.g., [31]), and persuasion (e.g., [16]). Also, the number of 

rule-based toolkits for context-aware applications indicates 

the popularity of rules (e.g., [1, 3, 13, 18]). 

Decision tree classifiers (e.g., [35]) learn a tree from a 

dataset. A decision tree infers an output by deciding on a 

specific input feature at each node as it traverses down and 

returns a decision once it reaches a leaf. Decision trees are 

popular for their simplicity of use, interpretability, and good 

runtime performance. Decision trees are popular in 

applications to recognize: identity / ability (e.g., [8]), 

interruptibility (e.g., [2, 42]), mobility (e.g., [45]), etc. 

Naïve Bayes is a probabilistic classifier that applies Bayes 

theorem to model the probability of the output of a system 

given the inputs. It applies a naïve assumption that features 

are conditionally independent of one another. Training and 

runtime performance are fast. Naïve Bayes classifiers have 

been used to recognize: physical activity (e.g., [9]), 

domestic activity (e.g., [39]), interruptibility (e.g., [42]). 

Hidden Markov models (HMM) [36] are Bayesian 

probabilistic classifiers that model the probability of a 

sequence of hidden states given a sequence of observations 

(input features with respect to time). First-order Markov 

models assume that only the previous state affects the next, 

and only the current state influences the current 

observation. HMMs have been used to model: physical 

(e.g., [9]) and domestic activity (e.g., [21]), gaze (e.g., [7]). 

Several applications also combine rules for higher level 

logic with classifiers for lower level recognition (e.g., [16]).  

INTELLIGIBILITY AND EXPLANATION TYPES 

As we focus on these four decision models, we need to 

generate the various explanations that users want to receive. 

Lim et al. [25, 26] enumerated ten explanation types that 

are important to end-users of context-aware applications, 

and in this work we provide mechanisms to automatically 

extract eight of them from the applications. We review the 

different explanation types and their definitions.  

Model-independent explanation types 

If we represent a context-aware application as sensing 

inputs, maintaining system state, and producing an output, 

we can identify a set of explanations that are independent of 

the decision model and how it makes its decisions. 

Inputs explanations inform users what input sensors (e.g., 

thermostat, GPS coordinates) and information sources (e.g., 

weather forecast, restaurant reviews website) that the 

application employs so that users can understand its scope. 

Inputs should be described by their name and possibly also 

with some description of what they mean or refer to. 

Outputs explanations inform users what output options the 

application can produce. This lets users know what it can 

do or what states it can be in (e.g., activity recognized as 

one of three options: sitting, standing, walking). This helps 

users understand the extent of the application’s capabilities. 

Outputs explanations can also be used to help ask model-

based explanations Why Not and How To (see below) by 

allowing the user to select an alternative desired output. 

What explanations inform users of the current (or previous) 

system state in terms of output value; this makes the 

application state explicit. Input values are obtained by 

recursively asking What on the Inputs. When a user asks a 

why question, she may actually be asking for What. 

  
Figure 1: (Left) Counts of model types used in 109 of 114 

reviewed context-aware applications. (Right) Counts for 50 

recognition applications; classifiers are used most often for 

applications that do recognition. Key: decision tree (DT), naïve 
Bayes (NB), hidden Markov models (HMM), support vector machines 

(SVM), k-Nearest Neighbor (kNN). 
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What If explanations allow users to speculate what the 

application would do given a set of user-set input values. 

Model-dependent explanation types 

Explanations regarding the mechanism of the decision 

making process in the application are model-dependent, and 

would vary depending on the model used. 

Why explanations inform users why the application derived 

its output value from the current (or previous) input values. 

For rule-based systems, this returns the conditions (rules) 

that were true such that the output was selected. 

Why Not explanations inform users why an alternative 

output value was not produced given the current input 

values. They could provide users with enough information 

to achieve the alternative output value, but not necessarily 

so (e.g., see the naïve Bayes explanation algorithm later). 

How To explanations answer the question "In general, how 

can the application produce alternative output value X?" 

This is in contrast to asking when a specific event occurs.  

Certainty explanations inform users how (un)certain  the 

application is of the output value produced. They help the 

user determine how much to trust the output value. 

We omit explaining about the Situation because it is 

domain specific and independent of application behavior. 

We omit explaining Control because this is already covered 

by Enactor Parameters [13]. 

INTELLIGIBILITY TOOLKIT 

We have presented the four most popular context-aware 

decision model types, and laid out eight explanation types 

that are important for context-aware applications to provide. 

Here we describe the Intelligibility Toolkit that supports the 

automatic generation of these explanation types from these 

decision models. Context-aware applications built with the 

toolkit freely receive the capability of providing these 

generated explanations to end-users. The toolkit is designed 

to satisfy requirements inspired from Olsen's writings about 

infrastructure evaluation [32]: 

R1) Lower barrier to providing explanations. With the 

toolkit, application developers do not need to know how to 

generate explanations from the most popular models used in 

context-aware applications. Explanation generation 

algorithms and heuristics are encapsulated into the toolkit. 

R2) Flexibility of using explanations. Given the simplicity 

of invoking various explanation types, all types can be 

generated with the same level of ease. Developers can then 

concentrate on choosing the most suitable explanation for 

their applications and users. This supports rapid prototyping 

of providing explanation solutions to see which works best. 

R3) Facilitate appropriate explanations automatically. 

Even with this rapid prototyping support, we encourage the 

use of appropriate explanations, particularly following the 

recommendations from Lim & Dey [25] of how different 

explanation types are more appropriate in various contexts. 

R4) Support combining of explanations. Some explanation 

types depend on other types to give a complete explanation 

to the user. For example, a Why Not explanation needs to 

inform the user of the set of Output values so that she 

would ask only about what is possible in the application. 

Other than nesting explanations, explanations can also be 

combined to enhance user experience. For example, 

combining the How To and What If explanations can 

expedite users in finding good examples to learn how an 

application works (see Figure 7, right). 

R5) Generalizability across (a) explanation types; (b) 

decision model types; and, (c) explanation provision. 

Although the toolkit currently covers a range of eight 

explanation types, four popular decision models and 

methods for simplifying and presenting explanations, like 

any toolkit, it is not comprehensive. The toolkit can be 

extended to support (a) new explanation types and new 

methods to explain the supported models (e.g., competing 

methods to explain naïve Bayes are presented in [28, 34, 

37]); (b) new model types (e.g., SVM, clustering) as long as 

explanation generation algorithms can be developed for 

them; and (c) new ways to present explanations. 

Architecture 

The Intelligibility Toolkit (Figure 2), implemented in Java, 

leverages mechanisms in the Enactor framework [13] of the 

Context Toolkit [11]. Enactors contain the application logic 

of the context-aware application and contain References 

that monitor the state of input Widgets. Each Reference 

contains a rule and is triggered when its rule is satisfied. 

This is managed automatically by the discovery mechanism 

of the Context Toolkit. 

We added an output property and a list of its values for the 

Enactor to represent its output value, and output options. 

Each output value is associated with a Reference.  

Extension to support classifiers 

As it was previously purely rule-based, we extended the 

Enactor framework to also support machine learning 

    

Figure 2: Architecture for handling rules and classifiers. The 

Intelligibility Toolkit adds four components to the Enactor 

framework of the Context Toolkit. Users ask for explanations with 

Querier, and invoke Explainer to generate explanations. The 

explanations may be simplified with a Reducer, and rendered 

through a Presenter.  
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classifiers. In a classifier-based set up, multiple References 

can be associated with a classifier, but each Reference is 

associated with a different output value. Each Reference is 

triggered when the classifier classifies the Widget state as 

the Reference’s associated output value. We used Weka 

[19] for the decision tree and naïve Bayes classifiers, and 

Jahmm [15] for HMM classifiers. 

Modifications to extend Intelligibility 

Next, we describe four components we added to the Enactor 

framework to support a wider range of intelligibility (see 

architecture diagram in Figure 2).  

Explainer 

This is the main component of the Intelligibility Toolkit 

that contains the mechanisms and algorithms to generate 

explanations based on the decision model. There is a 

generic Explainer that generates explanations for 

model-independent types, and subclasses of Explainer for 

each of the four decision models supported (see next 

section on Explanation Generation Algorithms). While we 

have implemented one Explainer per model, additional 

Explainers can be developed to support other types of 

models we have not covered, and also to generate different 

explanation methods for existing model types. For example, 

we implemented the weights of evidence method from [34] 

to explain Bayesian models (naïve Bayes, HMM), but there 

are other explanation methods that could also provide 

different explanations, e.g., [28, 37]. The use of Explainers 

and their standardized programming interfaces supports 

requirements R1 and R2. The creation of new Explainers 

for models or explanation types to plug into the toolkit 

supports R5a and R5b, respectively. 

Explanation Struct (Expression) 

We define an explanation in terms of one or multiple 

reasons (e.g., multiple reasons for Why Not). Each reason 

can be a singular conditional (e.g., one certainty value for a 

Certainty explanation) or a conjunction (e.g., multiple 

conditionals for a Why explanation). The conditional is the 

atomic unit of an explanation (e.g., certainty=90%, 

temperature<24°C). Furthermore, there can be negated 

conditionals (e.g., not temperature≥24°C). Formally, we 

define explanations in Disjunctive Normal Form (DNF), i.e. 

a disjunction (OR) of conjunctions (ANDs) of conditionals 

(see Figure 3; see example in Figure 4). The standardization 

of explanation information supports R4 such that there is a 

standard way to pipe and feed different explanation types. 

BestExplanationAdapter 

We support requirement R3 by providing the 

BestExplanationAdapter component. It takes in the 

current context of the application (e.g., appropriateness, and 

criticality) and returns the most suitable explanation types 

(e.g., providing Why Not explanation of the second likeliest 

inference when the system accuracy is below a threshold). 

Querier 

While some explanation types (Inputs, Outputs) are 

constant once the application and model are defined and do 

not depend on events or instances, other types depend on 

what happened and what the user is asking. The base 

Querier takes the current inputs and output values and is 

used for explanation types What, Why, and Certainty. 

AltQuerier extends Querier and includes an alternative 

target output value to facilitate explanation types Why Not, 

and How To. UserInputsQuerier extends Querier and 

allows the setting of input values, supporting What If 

explanations. Queriers can be extended to employ different 

constraining mechanisms, such as querying based on time. 

Formally, they allow explanations to be constrained (e.g., to 

convert How To to Why) allowing for different explanation 

types to be supported (requirement R5a). 

Reducer 

Explanations generated from Explainers may be unwieldy 

to an end-user in two ways: (i) too many reasons (e.g., 

numerous ways to achieve a target output value), and (ii) 

each reason being too long (e.g., numerous inputs with 

required values to cause the output value). The latter case 

occurs when many sensors and feature values are used to 

build the models, as is the case for accurate learned 

systems. Reducer components simplify the Explanation 

Struct so that the explanation is more interpretable to users. 

To reduce the number of reasons, we implemented two 

types of DisjunctionReducers: FirstDReducer 

that just takes the first conjunction in the order of 

disjunctions of the explanation, and ShortestDReducer 

selects the shortest conjunction reason. To reduce the length 

of each reason, we implemented two types of 

ConjunctionReducers: TruncationCReducer 

that just truncates the conjunction reason to a specified 

length (e.g., 7 conditionals), and AttributeCReducer 

that filters out from the conjunction all conditionals except 

those about a specified set of Widget Attributes. These 

attributes can be application-specific, being most salient to 

the application, most easily understood by users, or most 

privacy preserving. Reducers support requirement R5c by 

being extensible to support other heuristics.  

Presenter 

Even if the explanation is large, a developer may elegantly 

present it (e.g., see Figure 7), instead of reducing it. 

Explainers produce explanations in the form of Explanation 

  

Figure 3: Schematic of explanation in Disjunctive Normal Form 

(DNF), and UML diagram of Explanation Struct format to 

programmatically represent explanations.  
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Structs, and Presenters render them in a form 

presentable to end-users, e.g., as text, visualization, or 

interactive graphical interface. Developers can build 

different Presenters to suit their target user and device form 

factor (requirement R5c). 

We provide the reference implementation 

RulesTextPresenter that takes an Explanation Struct 

from the RulesExplainer and creates a text-based 

presentation based on templates (e.g., see Figure 7). 

Explanations can also be presented to system components 

rather than to end-users. EvidenceJsonPresenter 

converts an Explanation Struct into JavaScript Object 

Notation (JSON) and posts it via a HTTP server call so that 

a remote client may consume the explanation. 

A Presenter can also deal with combining explanations, 

such as presenting Certainty information with a Why 

explanation, showing Inputs for the What If explanation, or 

showing Output values for the Why Not and How To. 

EXPLANATION GENERATION ALGORITHMS 

We describe specific algorithms we developed to generate 

explanations from the four decision models that the 

Intelligibility Toolkit currently supports. Some explanation 

types are model-independent, and are supported by the 

generic Explainer. We describe the model-independent 

explanations first. Inputs explanations report the name and 

definition property of each context type (Widget attribute) 

used in the application. Outputs explanations report a List 

of output values for Enactor. What explanations report the 

current Enactor output value. To obtain input values (Input 

What explanations), handles for the input contexts are 

obtained via the Input explanation, and through those, the 

What explanation. A What If explanation sets input context 

values set by the user (through UserInputsQuerier), 

and tests it on all References. It reports the output value 

associated with the Reference that gets triggered. Model-

specific explanations are generated from different 

Explainers for each model. Due to space constraints, our 

proofs are brief, but provide enough detail for replicability. 

RulesExplainer 

The Enactor framework supports one rule per Reference 

and we enforce one Reference per output. A decision model 

with multiple output values would have multiple rules, one 

per value. We make rules explainable by converting them 

into DNF by recursively applying De Morgan's Law, 

double negative elimination, and the distributive law. To 

explain how each explanation type is generated, we shall 

use the set up described in Table 1. 

Why explanation 

This explanation selects the rule(s) that was satisfied to 

produce the actual output (e.g., see Figure 4, top). Note that 

multiple rules may be simultaneously satisfied. 

Why Not explanation 

This explanation selects rules that would achieve the target 

output value and, for each trace, identifies unsatisfied 

conditionals and returns a disjunction of traces containing 

these conditionals (Figure 4, bottom). 

How To explanation 

This explanation returns the DNF of the rule that achieves 

the target output, where each trace is a rule of how to 

achieve the target output value (Figure 4, bottom). 

Certainty explanation 

Enactor rules currently do not compute uncertainty, though 

uncertainty in inputs can be propagated descriptively. 

Input Conditionals Output Values 

a: Activity = Sitting 

b: Noise = Quiet 

c: Latitude near Office's 

d: Longitude near Office's 

e: Schedule = In Meeting 

: Availability = Yes 

: Availability = Somewhat Not 

: Availability = Not 

Table 1. Pedagogical example of input conditionals and output 

values for rule and decision tree. This describes an application to 
infer a user's availability based on his activity, the noise level around him, 

his proximity to his office (by latitude, longitude), and his schedule. 

Input state (a, ¬b, ¬c, d, ¬e): user is sitting in a noisy place at latitude 

not near the office, longitude near the office, and is not in a meeting.  

  

   
Figure 4: Generating explanations from Rules in DNF.  

Why available ()? Because the user is sitting (a), is located at latitude 
not near his office (¬c), and is not in a meeting (¬e). 

Why Not unavailable ()? Because he isn't  near his office by latitude 

(c), or isn't in a meeting (e). 

How To infer unavailable ()? He needs to be near his office by 
latitude (c) and longitude (d); or be in a meeting (e). 

  
Figure 5: Generating from Decision Trees.  

Why available ()? Because the user is sitting (a), is not located at 

latitude near his office (¬c), is located at longitude near his office (d), and 

is not in a meeting (¬e). 
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J48Explainer (for Decision Tree) 

This explainer generates explanations from the Weka [19] 

J48 implementation of the C4.5 decision tree [35]. There 

are some differences between decision trees and Enactor 

rules. Decisions for inferring the output are made from the 

top down, instead of from the bottom up as for rules; and 

decision trees encode traces for multiple output values 

within a single tree, unlike a rule-based structure. So DNF 

rules are created by traversing all paths in the tree and 

grouping paths by output values at their leaves. In DNF, we 

can generate explanations in the same way as for rules. 

Why explanation 

For every classification of an instance, the tree traces a 

single path to produce a Why explanation (Figure 5, top). 

Why Not, and How To explanations 

We retrieve the disjunction of traces that result in the target 

output value, then apply respective techniques as for rules. 

Certainty explanation 

Decision trees are built from statistical data, so they can 

model certainty from the probability distribution of 

remaining data points at each leaf. 

NaiveBayesExplainer 

To explain the naïve Bayes classifier, we extend the idea of 

weights of evidence demonstrated in [34] to multi-class 

problems. This approach explains additive classifiers by 

calculating an evidence score of how an instance is 

classified as a certain class value. If the score is positive, 

the classifier infers the class value, otherwise it infers 

another class value. The evidence can be decomposed 

linearly into its constituent evidences, indicating how much 

each feature contributes to the inference. 

We start with the posterior probability that class 𝑐 ∈ 𝐶 is 

inferred from a set of 𝑁 class values given the observed 

instance feature input values 𝑓: 

 𝑃 𝑐 𝑓 = 𝑃 𝑐 𝑓1, 𝑓2, ⋯ , 𝑓𝑛 ∝ 𝑃(𝑐)  𝑃(𝑓𝑟 |𝑐)𝑛
𝑟=1   

where fr  is a feature of 𝑛 possible values. The probability is 

calculated from the prior probability that a class would be 

in, 𝑃(𝑐), and the conditional probabilities of each feature 

value given the class, 𝑃(𝑓𝑟 |𝑐). 𝑐𝑖  is inferred over other class 

values when 𝑃 𝑐𝑖  𝑓 ≥ 𝑃 𝑐𝑗  𝑓 , ∀𝑐𝑗 ∈ 𝐶. Since this is 

true for all class values, we can multiply all iterations of 

this inequality to get a combined expression:  

 𝑃 𝑐𝑖  𝑓 𝑁
𝑗 =1 ≥  𝑃 𝑐𝑗  𝑓 𝑁

𝑗 =1 . 

Taking a logarithm gives us the evidence for the inference 

 g = 𝑙𝑜𝑔  𝑃 𝑐𝑖 𝑓 𝑁
𝑗 =1 − 𝑙𝑜𝑔  𝑃 𝑐𝑗  𝑓 𝑁

𝑗 =1 = 𝑔𝑖 − 𝑔∑ ≥ 0  

For brevity, we omit our working to derive the expression  

g(𝑐𝑖 , 𝑟) = h +   f
𝑛

𝑟=1
  (1) 

where h(𝑐𝑖) = 𝑁 𝑙𝑜𝑔 𝑃(𝑐𝑖) − ℋ and  ℋ = ∑ 𝑙𝑜𝑔 𝑃(𝑐𝑗 )𝑁
𝑗=1 , 

f(𝑐𝑖 , 𝑟) = 𝑁 𝑙𝑜𝑔 𝑃(𝑓𝑟 |𝑐𝑗 ) − ℱ and ℱ = ∑ 𝑙𝑜𝑔 𝑃(𝑓𝑟 |𝑐𝑗 )𝑁
𝑗=1 . 

Naïve Bayes can be explained as the sum of evidence: 

1. Prior probabilities of selected class value, h 𝑐𝑖  

2. Due to each feature value, f(𝑐𝑖 , 𝑟) 

See Figure 6 for an illustrative use of this explanation. 

Why explanation 

Why explanations are given in terms of weights of evidence 

of contributing factors and the total evidence, g. In this 

case, these factors are the predisposition, h, (prior 

probabilities) and the feature evidence, f, for each input.  

Why Not explanations 

Suppose the user is interested in an alternative target class 

value, 𝑐𝑖′, that was not inferred. We compute the evidence 

for the difference between the actual and target class values 

through a pairwise comparison, and knowing 𝑃 𝑐𝑖  𝑓 >

𝑃 𝑐𝑖′ 𝑓 . The evidence of why 𝑐𝑖  was inferred over 𝑐𝑖′ is 

∆g 𝑐𝑖 , 𝑐𝑖′, 𝑟 =  g(𝑐𝑖 , 𝑟) − g(𝑐𝑖′, 𝑟) > 0 (2) 

How To explanation 

This shows weights of all features due to normalized values 

of the features, so the user can make sense of the general 

impact of each feature. (i) For nominal features, they only 

take a value of 0 or 1, so their evidence will either be 0 or f. 

(ii) For naïve Bayes, numeric features are commonly 

modeled by the Normal distribution; we "normalize" 

numeric features to a value of one standard deviation, 𝜎𝑓|𝑐 𝑖 , 

from the feature mean given the class value: 𝜇𝑓|𝑐 𝑖 ± 𝜎𝑓|𝑐 𝑖 .  

  
Figure 6: Why Not (Left), and How To + What If (Right) 

explanations for a mobile phone physical activity recognition 

application using accelerometer data trained with a naïve Bayes 

classifier. The application has inferred that the user is Sitting. 

How to read Why Not: The top bar indicates the average evidence 

∆g > 0, i.e. more evidence for Sitting than Standing. The next bar indicates 

the evidence due to prior probabilities ∆h < 0  is in favor of Standing (i.e. 
user is more likely to be standing). Each of the following bars indicates the 

difference in evidence for each feature, ∆f, and whether they are in favor of 
Sitting or Standing.  

Why Not inferred Standing but Sitting? Because (i) the prior 
likelihood indicates that it is pre-disposed to inferring Standing rather than 

Sitting, (ii) the values of Mean(x), Mean(y), Energy(x), Energy(y), etc, 
support the inference for Sitting, while (iii) the values of Mean(z), 

Energy(z), etc, support the inference for Standing. The user can interpret 

that the z-axis could be instrumental to infer Standing. 

How To + What If explanation: User selects values of inputs, and see 

how the corresponding evidence changes along with the average overall 
evidence (bar at top), to see if the threshold (vertical bar) is crossed. 
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In terms of what the user can do with input values to get a 

desired target output, if all values are nominal, we can 

permute all combinations and return those that achieve the 

target output. If multiple inputs are numeric, this becomes 

intractable. Instead, we could use a How To If explanation. 

How To If explanation 

This provides a tractable form of How To explanations (for 

nominal and numeric features) by constraining all feature 

values except one. For a numeric feature that is not fixed, 

we can vary the input value as it deviates from the mean 

and determine the threshold at which the outcome is 

achieved (or fails, if it is the opposite relation). A 

generalization of this with increased interactivity is the 

How To + What If explanation. 

How To + What If explanation 

One way to help users appreciate the influence of each 

weight is to allow users to speculate on the outcome with 

selected feature values. The What If explanation supports 

this, but does not necessarily start with sensible values to 

help users learn. The How To + What If explanation starts 

with the target class value, 𝑐𝑖′, and provides a set of mean 

feature values that satisfies this output, 𝜇𝑓|𝑐 𝑖 . The user can 

then tweak the feature values to see if the target output 

value would still be inferred (Figure 6, right). 

Certainty explanation 

This reports the probability of inference, 𝑃 𝑐𝑖 𝑓 . 

HMMExplainer (for Hidden Markov Model) 

We apply the weights of evidence approach as used for 

naïve Bayes, additionally considering temporal factors. 

Once an HMM is learned (parameters 𝜋, 𝐴, 𝐵 determined), 

inference of the state sequence is made by calculating its 

probability given an observation sequence 

 𝑃 𝑥𝑖 𝑜 ∝ 𝑃(𝑥1
𝑖 )  𝑃(𝑥𝑡

𝑖|𝑥𝑡−1
𝑖 )𝑇

𝑡=2    𝑃(𝑜𝑡 |𝑥𝑡
𝑖)𝑇

𝑡=1    

where 𝑥𝑡
𝑖 ∈ 𝑋, 𝑖 ∈  1, 𝑁 , 𝑡 ∈  1, 𝑇  is a state of 𝑁 possible 

states at time 𝑡, in a sequence of length 𝑇, and 𝑜𝑡  is the 

observation at that time. Taken together, the states represent 

a sequence 𝑥𝑠 , 𝑠 ∈  1, 𝑁𝑇 . The probability is calculated 

from the prior probability that a state would be in, 𝑃(𝑥1
𝑖 ), 

the transition probabilities between the states, 𝑃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 ), 

and the emission probabilities of the observations given the 

states 𝑃(𝑜𝑡 |𝑥𝑡
𝑖). For detailed information on HMMs, refer to 

[36]. While class and state refer to the same thing, we use 

the terminology consistent with HMM literature. 

𝑥𝑖  is inferred over other states when 𝑃 𝑥𝑖 𝑜 ≥ 𝑃 𝑥𝑠 𝑜 ,

∀𝑥𝑠 ∈ 𝑋. Now, if we multiply this equation with all 𝑁𝑇  

permutations of 𝑠, we get  𝑃 𝑥𝑖 𝑜 𝑁𝑇

𝑠=1 ≥  𝑃 𝑥𝑠 𝑜 𝑁𝑇

𝑠=1 . 

Taking a logarithm gives us the evidence for the inference 

 g = log  𝑃 𝑥𝑖 𝑜 − log  𝑃 𝑥𝑠 𝑜 𝑁𝑇

𝑠=1
𝑁𝑇

𝑠=1 = 𝑔𝑖 − 𝑔∑ ≥ 0  

At this juncture, we point out that we would like to present 

the evidence as a sum of feature evidences, instead of each 

observation as a whole. Viewing evidences in terms of full 

permutations of observations may be too difficult for end-

users to assimilate. To do so, we make the naïve assumption 

(similarly used in naïve Bayes) that features are 

conditionally independent of one another given any state: 

𝑃 𝑜𝑡  𝑥𝑡
𝑖 = 𝑃 𝑜𝑡1

, 𝑜𝑡2
, … , 𝑜𝑡𝑛

 𝑥𝑡
𝑖 ∝  𝑃 𝑜𝑡 𝑟

 𝑥𝑡
𝑖 𝑛

𝑟=1 . 

Where 𝑜𝑡 𝑟
 is the value of feature 𝑟 of the observation at 

time 𝑡, and there are 𝑛 features. With some working we get 

g(𝑥𝑖 , 𝑟, 𝑡) = h +   u
𝑇

𝑡=2
 +    f

𝑛

𝑟=1

𝑇

𝑡=1
  (3) 

where  

h(𝑥𝑖) = 𝑁𝑇 log 𝑃 𝑥1
𝑖  −ℋ, and  ℋ =  ∑ log 𝑃(𝑥1

𝑗
)𝑁

𝑗=1  
𝑇
, 

u(𝑥𝑖 , 𝑡) = 𝑁𝑇 log 𝑃 𝑥𝑡
𝑖 𝑥𝑡−1

𝑖  − 𝒰, and  

𝒰 =  ∑ log 𝑃 𝑥𝜏
𝑗2

 𝑥𝜏−1
𝑗1

 𝑁,𝑁
𝑗1=1,𝑗2=1  

𝑇−2
, 

f(𝑥𝑖 , 𝑟, 𝑡) = 𝑁𝑇 log 𝑃 𝑜𝑡 𝑟
 𝑥𝑡

𝑖 −ℱ, and 

ℱ = 𝑛𝑇−1 ∑ log 𝑃 𝑜𝜏 𝑟
 𝑥𝜏

𝑗
 𝑁

𝑗=1  
𝑇
. 

So, with the naïve assumption of independence among 

features, an HMM can be explained as the sum of evidence: 

1. Prior probabilities of selected state, h(𝑥𝑖) 

2. Due to each state transition, u 𝑥𝑖 , 𝑡   

3. Due to each feature value at sequence step, f 𝑥𝑖 , 𝑟, 𝑡  

We now have terms due to time, and the evidence for 

features are two-factored including time dependency. See 

Figure 8 for a demonstration of this explanation. Note that 

when 𝑇 = 1, then we just have the naïve Bayes explanation.  

Inputs and What If explanation 

Though not formally an input, these explanations should 

also include state transitions. For the What If explanation, 

the user may want to speculate if a previous state was 

different, even though hidden states are actually inferred. 

Why, Why Not, How To, and Certainty explanations 

Same as for naïve Bayes, but with added evidence for time.  

Reducing Dimensionality 

If an application has many input features and/or a long 

sequence (i.e,. large 𝑛 and/or large 𝑇), there may be too 

many evidence components. To reduce this dimensionality 

and make this more interpretable, we can sum evidence by 

feature across time (see Figure 8), or present evidence by 

time and sum evidence across features for each observation. 

VALIDATION: DEMONSTRATION APPLICATIONS 

To demonstrate that we can easily generate a range of 

explanations from context-aware applications using the 

Context Toolkit augmented with the Intelligibility Toolkit, 

we built three example intelligible applications. These 

examples demonstrate the use of the Intelligibility Toolkit 

for a span of explanation types and model types, and also 

cover a range of application domains for which the models 

are popular. While the toolkit significantly contributes to 

lowering the bar to providing explanations in context-aware 

applications, the explanations still need to be well designed 

(e.g., for various UI, interaction, and device modality), and 



 

crafted specifically for each application problem domain. 

Therefore, rather than examining different explanation 

methods for the same model or application (e.g., [38]), we 

built different applications for each model type to 

demonstrate the generality of the Intelligibility Toolkit to 

provide explanations across application domains. 

IM Autostatus Plugin – Rules / Decision Tree 

Rule-based and decision tree-based explanations are similar 

so we only show decision tree explanations here. We built 

an AIM plugin that predicts when a buddy will respond to a 

message (Figure 7). It is trained on an existing dataset from 

[2] to build a decision tree. It takes desktop-based sensor 

inputs and makes response predictions (within/after 1 min). 

We describe how we built this application in detail (the 

following two applications were built in a similar fashion) 

with the following procedure: 

1. Create an Enactor for the overall application.  

2. Create a Widget that tracks and updates all input 

features (extracted from the Subtle toolkit [14]). 

3. Set a pre-trained J48 decision tree classifier model to 

be the Enactor's classifier.  

4. Set the Enactor's list of output values to two values: 

WITHIN_1_MIN and AFTER_1_MIN.  

5. Create two References, (a) associate them with the 

classifier and (b) associate one output value with one 

Reference. The developer implements what the 

application does when each Reference is triggered. 

6. Create a RulesExplainer and associate with both 

References. 

7. Set the DisjunctionReducer and ConjunctionReducer of 

the Explainer to FirstDReducer and 

TruncationCReducer, respectively. 

8. Create an IMAutostatusPresenter, a custom extension 

of RulesTextPresenter that understands what each 

feature means to provide domain-specific textual 

explanations. It also handles printing an AIM message. 

9. Code UI elements to invoke, on user prompt, various 

getExplanation() functions from the Explainer. The 

corresponding Querier needs to be supplied when 

invoking each explanation type. 

When the user asks for, say, a Why Not explanation about 

why not WITHIN_1_MIN: 

1. The UI parses his request, populates an AltQuerier 

with WITHIN_1_MIN, and invokes 

getExplanation(WhyNot, AltQuerier). 

2. The Enactor takes the returned explanation Expression 

and passes it to RulesTextPresenter that renders it for 

the user as an IM response. 

Mobile Physical Activity Recognizer – Naïve Bayes 

The naïve Bayes application we built is a physical activity 

recognizer that uses the accelerometer on a Google Android 

mobile phone to infer whether the user is sitting, standing, 

or walking (see Figure 6). It uses the NaiveBayesExplainer 

to generate all of the explanation types, FirstDReducer and 

TruncationCReducer to simplify the explanations, and 

EvidenceJsonPresenter to render the explanation in a 

server call. The Android application retrieves the 

explanation and renders the bar chart visualization. 

Home Activity Recognizer – HMM  

We demonstrate explanations from an HMM model using 

the dataset from [21] about domestic activity, and train a 

HMM with a sequence length of 5 min, and 1 min per 

sequence step. The application takes 14 binary input 

sensors and infers which activity (out of 7) the user is 

performing. It uses an instance of HMMExplainer to 

generate all of the explanation types, FirstDReducer and 

TruncationCReducer to simplify the explanations, and a 

custom Presenter to exaggerate and visualize the 

explanation evidences (see Figure 8). 

LIMITATIONS AND DISCUSSIONS 

While the Intelligibility Toolkit is extensible, the current 

implementation does not cover some outstanding aspects. 

(i) It does not cover the less-frequently used model types 

(e.g., SVM, clustering) and does not handle ensemble 

techniques of composite classifiers (e.g., bagging, 

boosting). (ii) There remain some types of explanations that 

users ask for that are not yet supported: e.g., how to Control 

an application to change its behavior (though this is 

supported with Parameters in the Enactor framework [13]), 

History (when something happened/changed, trends), and 

Provenance (source, credibility, and accuracy of inputs). 

(iii) Often, sensed raw inputs of context-aware applications 

are pre-processed, e.g., using signal processing  or 

computer vision techniques. Although important [33], the 

toolkit does not currently capture and explain these pre-

 
Figure 7: IM Autostatus. Demonstration of various explanations 

from an IM responsiveness prediction plugin that uses a decision 

tree to predict when a buddy would respond.  

 

Alice (5:08:03 PM): It would be so nice if something made sense for a change.
Bob (5:08:04 PM): im-autostatus>> It is likely that I will respond after 1 
min.
(You may type “im-why”, “im-whynot”, “im-howto”, “im-%”, or “im-help”)

Alice (5:08:30 PM): im-why
Bob (5:08:31 PM): im-autostatus>> It is likely that I will respond after 1 
min because:
1.I am more than 29 years old
2.You typed more than 3 words
3.Your message does not contain a URL
4.Your message is not a question
5.I have your IM window open but out-of-focus
(You may type “im-1”, “im-2”, “im-3”, “im-4”, “im-5”, “im-why”, “im-
whynot”, “im-howto”, “im-%”, or “im-help”)

Alice (5:09:43 PM): im-1
Bob (5:09:44 PM): im-autostatus>> I am 31 years old.

Alice (5:09:47 PM): im-%
Bob (5:09:48): im-autostatus>> It is 85.6% likely that I will respond after 1 
min.

Alice (5:09:52 PM): im-whynot < 1 min
Bob (5:09:53 PM): im-autostatus>> It is likely that I will not respond within

1 min because:
1.I have been focused on a window for more than 0 sec in the last 30 sec
2.I have been moving my mouse for more than 130 events in the last 30 sec

Alice (5:10:29 PM): im-howto < 1 min
Bob (5:09:30 PM): im-autostatus>> I would respond within 1 min if:

1.The I’ve been focused on a window for less than or equal to 0 sec in 
the last 30 sec

2.I have been moving my mouse for more than 130 events in the last 30 sec

3.Your IM message comprises less than or equal to 59 characters



 

processing mechanisms. (iv) Applications may encounter 

behaviors due to the infrastructure rather than the decision 

model or inputs. For example, unexpected behavior may 

result from resources suddenly being unavailable due to 

connectivity issues. The toolkit does not currently support 

explanations about the infrastructure. 

RELATED WORK IN EXPLAINING CONTEXT 

The Intelligibility Toolkit supports a wide range of 

explanations for multiple decision models. Previous 

systems only covered a subset of the explanation types, and 

only for one or one type of decision model. 

The most similar framework to our toolkit is the Enactor 

framework [13], on which we base our Intelligibility 

Toolkit. It can provide What explanations by exposing the 

state of input Widgets, and Why explanations by reporting a 

relevant rule. However, it does not support the other 

explanation types or any models beyond rules. The Crystal 

framework [30] supports only Why / Why Not explanations 

for desktop-based applications to explain themselves 

through Command Objects. The Whyline [22] similarly 

explains Why / Why Not to end-user programmers, by 

examining the program execution tree. PersonisAD [1] 

defines a distributed framework to support What 

explanations by resolving identities and associations of 

devices, locations, people, etc. The Intelligent Office 

System [10] provides What explanations by showing the 

system state, History explanations by listing the states 

across time, and Why explanations about the learned cut-

points for its rules. Panoramic [44] provides Why, What, 

and History explanations to explain location events through 

a visualization of parallel timelines of sensed and rule-

determined events.  

While the aforementioned systems provide explanations for 

rules, Tullio et al. [42] explained interruptibility inferred 

from decision trees and naïve Bayes with What 

explanations. The Intelligibility Toolkit can provide deeper 

(e.g., Why, Why Not, How To) explanations from these 

models. Kulezsa et al. [24] built an intelligible email sorter 

that uses naïve Bayes for classification. It provides Why, 

Why Not, and What If explanations based on the weights of 

evidence approach [34]. The Intelligibility Toolkit also uses 

this approach, and adds more explanation types, supports 

numeric input features, extends it for HMMs, and has been 

developed to be extensible.  

CONCLUSION AND FUTURE WORK 

We have presented the Intelligibility Toolkit that currently 

provides automatic generation of eight explanation types 

(Inputs, Outputs, What, What If, Why, Why Not, How To, 

Certainty) for the four most popular decision model types 

(rules, decision trees, naïve Bayes, hidden Markov models) 

in context-aware applications. It supports the generation of 

explanation structures (through Explainers), querying 

mechanisms to specify questions and constrain explanations 

(through Queriers), simplifying complex explanations 

(through Reducers), and presenting the explanations to end-

users and other subsystems (through Presenters). The 

toolkit is also extensible to support new explanation types, 

model types, reduction heuristics, and presentation formats. 

The Intelligibility Toolkit makes it easier for developers to 

provide many explanation types in their context-aware 

applications. This ease also allows developers to perform 

rapid prototyping of different explanation types to discern 

the best explanations to use and the best ways to use them. 

In addition to addressing the limitations outlined earlier, we 

will use the Intelligibility Toolkit, to pursue further research 

questions regarding the intelligibility of context-aware 

applications. In particular, we can investigate and compare 

the efficacy of various explanation types, by measuring 

how well each type helps users to understand the 

application, and improve their trust in the application. We 

also plan to deploy an intelligible application with multiple 

explanation types, and multiple context types (e.g., location, 

physical activity), and conduct a longitudinal evaluation of 

the impact of intelligibility and how well it improves 

understanding or corrects misunderstanding. 
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Figure 8: Demonstration of Why explanation visualization 

from an application using a HMM to model domestic activity. 

This explains why the application inferred a sequence of Sleeping → 

Toilet → Toilet → Breakfast → Breakfast in the last 5 min. Evidence due 
to features (summed across the last 5 min) are indicated by the area of 

bubbles around the corresponding sensors in the floorplan. Evidence for 

each sensor across time is revealed in a tooltip.  

We can see that the Hall Bedroom Door being open is a strong indicator of 
inferring the sequence. The door being open is a stronger indicator than it 

being closed 4 min ago. The microwave is another strong indicator 

(biggest bubble in top right corner).  
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