

Toolkit to Support
Intelligibility in Context-Aware Applications

Brian Y. Lim, Anind K. Dey

Human-Computer Interaction Institute

Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213

{byl, anind}@cs.cmu.edu

ABSTRACT

Context-aware applications should be intelligible so users

can better understand how they work and improve their

trust in them. However, providing intelligibility is non-

trivial and requires the developer to understand how to

generate explanations from application decision models.

Furthermore, users need different types of explanations and

this complicates the implementation of intelligibility. We

have developed the Intelligibility Toolkit that makes it easy

for application developers to obtain eight types of

explanations from the most popular decision models of

context-aware applications. We describe its extensible

architecture, and the explanation generation algorithms we

developed. We validate the usefulness of the toolkit with

three canonical applications that use the toolkit to generate

explanations for end-users.

Author Keywords

Context-awareness, intelligibility, explanations, toolkits.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

General Terms

Algorithms, Human Factors.

INTRODUCTION

Context-aware applications [11] make use of sensed inputs

and contexts, coupled with intelligent decision-making, in

order to automatically and calmly [43] adapt to serve users

better. However, the implicit nature of context sensing, and

the growing complexity of models (e.g., rules, hidden

Markov models) underlying context-aware applications

make it difficult for users to understand them (e.g., [42]).

This can frustrate users [4], and cause them to lose trust in

the applications [29]. To counter this, it is important to

make context-aware applications intelligible [5, 25, 26] by

automatically providing explanations of application

behavior. In fact, this has been done in applications from

other domains (e.g., recommender systems [20], end-user

debugging [22], user interfaces [30], user modeling [10]),

and been found to improve user trust and acceptance of

these applications.

Several reviews have shown that users desire a wide range

of explanations (e.g., [17, 23, 26, 27]) and specifically, Lim

& Dey [25] describe a set of ten explanation types that

context-aware applications should provide for end-users.

The already challenging task of generating some

explanations from applications is made more challenging

with this requirement for many explanation types. In this

work, we designed and implemented the Intelligibility

Toolkit that automatically generates explanations from

models at the infrastructure level, so application developers

do not have to derive explanations themselves.

Our contributions are:

(1) An architecture for generating a wide range of

explanations drawn from Lim & Dey [25], including Why,

Why Not, How To, What, What If, Inputs, Outputs and

Certainty. Our current implementation extends a popular

toolkit for building context-aware applications [11, 13] and

supports the four most popular model types (rules, decision

trees, naïve Bayes, and hidden Markov models).

(2) A library of reference implementations of explanation

generation algorithms we developed to extract any of the 8

explanation types from any of the four models we support.

(3) Automated support for the recommendations from

[25] that promotes good design practice by making the most

contextually appropriate explanations easy for developers to

acquire. Applications can automatically obtain the most

appropriate explanations given the contextual situation.

As we will show, these contributions satisfy the

requirements laid out by Olsen for adding value to user

interface architectures [32]: (i) importance, (ii) problem not

previously solved, (iii) has generality across a range of

explanation types and decision model types, (iv) reduces

solution viscosity through increased flexibility for rapid

prototyping of explanations, (v) empowers new design

participants by making it easier to provide explanations,

and (vi) demonstrates power in combination by supporting

combinations of explanation types as building blocks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

UbiComp ‘10, Sep 26–Sep 29, 2010, Copenhagen, Denmark.
Copyright 2010 ACM 978-1-60558-843-8/10/09...$10.00.

The paper is organized as follows: we review context-aware

applications published in recent years from a number of

premier conferences to ascertain the most popular decision

models. Then we present a discussion of the explanation

types we seek to provide. Next, we describe the

Intelligibility Toolkit and how it provides explanations for

context-aware applications. We detail the explanation

generation algorithms we developed for the four most

popular decision models. We validate the toolkit through

demonstration applications and the application of Olsen’s

infrastructure guidelines. We then discuss other toolkit

features that would be valuable to support, and compare the

toolkit with related work. We end with discussing

opportunities for new research given the toolkit.

REVIEW OF DECISION MODELS USED IN CONTEXT-
AWARE COMPUTING

We sought to learn what the most popular context-aware

decision models are so that we could support these in the

Intelligibility Toolkit. We reviewed literature from three

major conferences over at least five years: CHI 2003-2009,

Ubicomp 2004-2009, and Pervasive 2004-2009. We found

that there were four popular models among the 114 context-

aware applications reviewed: rules, decision trees, naïve

Bayes, and hidden Markov models (see Figure 1). We

found some use of Support Vector Machines, and clustering

techniques (e.g, k-Nearest Neighbor), but not substantial.

Rules: We classify applications as rule-based if the authors

state that their applications were based on rules (e.g., if/else

logic), or that they were based on simple mapping

associations of IDs to entities (e.g., RFID). Developer

specified rules are the most popular decision models used in

context-aware applications. They are popular in the

following domains: activity recognition (e.g., [41]),

adaptation / personalization (e.g., [40]), awareness /

monitoring (e.g., [12]), reminders (e.g., [6]), location guides

(e.g., [31]), and persuasion (e.g., [16]). Also, the number of

rule-based toolkits for context-aware applications indicates

the popularity of rules (e.g., [1, 3, 13, 18]).

Decision tree classifiers (e.g., [35]) learn a tree from a

dataset. A decision tree infers an output by deciding on a

specific input feature at each node as it traverses down and

returns a decision once it reaches a leaf. Decision trees are

popular for their simplicity of use, interpretability, and good

runtime performance. Decision trees are popular in

applications to recognize: identity / ability (e.g., [8]),

interruptibility (e.g., [2, 42]), mobility (e.g., [45]), etc.

Naïve Bayes is a probabilistic classifier that applies Bayes

theorem to model the probability of the output of a system

given the inputs. It applies a naïve assumption that features

are conditionally independent of one another. Training and

runtime performance are fast. Naïve Bayes classifiers have

been used to recognize: physical activity (e.g., [9]),

domestic activity (e.g., [39]), interruptibility (e.g., [42]).

Hidden Markov models (HMM) [36] are Bayesian

probabilistic classifiers that model the probability of a

sequence of hidden states given a sequence of observations

(input features with respect to time). First-order Markov

models assume that only the previous state affects the next,

and only the current state influences the current

observation. HMMs have been used to model: physical

(e.g., [9]) and domestic activity (e.g., [21]), gaze (e.g., [7]).

Several applications also combine rules for higher level

logic with classifiers for lower level recognition (e.g., [16]).

INTELLIGIBILITY AND EXPLANATION TYPES

As we focus on these four decision models, we need to

generate the various explanations that users want to receive.

Lim et al. [25, 26] enumerated ten explanation types that

are important to end-users of context-aware applications,

and in this work we provide mechanisms to automatically

extract eight of them from the applications. We review the

different explanation types and their definitions.

Model-independent explanation types

If we represent a context-aware application as sensing

inputs, maintaining system state, and producing an output,

we can identify a set of explanations that are independent of

the decision model and how it makes its decisions.

Inputs explanations inform users what input sensors (e.g.,

thermostat, GPS coordinates) and information sources (e.g.,

weather forecast, restaurant reviews website) that the

application employs so that users can understand its scope.

Inputs should be described by their name and possibly also

with some description of what they mean or refer to.

Outputs explanations inform users what output options the

application can produce. This lets users know what it can

do or what states it can be in (e.g., activity recognized as

one of three options: sitting, standing, walking). This helps

users understand the extent of the application’s capabilities.

Outputs explanations can also be used to help ask model-

based explanations Why Not and How To (see below) by

allowing the user to select an alternative desired output.

What explanations inform users of the current (or previous)

system state in terms of output value; this makes the

application state explicit. Input values are obtained by

recursively asking What on the Inputs. When a user asks a

why question, she may actually be asking for What.

Figure 1: (Left) Counts of model types used in 109 of 114

reviewed context-aware applications. (Right) Counts for 50

recognition applications; classifiers are used most often for

applications that do recognition. Key: decision tree (DT), naïve
Bayes (NB), hidden Markov models (HMM), support vector machines

(SVM), k-Nearest Neighbor (kNN).

0
10
20
30
40
50
60
70

R
u

le
s

D
T

N
B

H
M

M

SV
M

kN
N

All Apps

0

5

10

15

R
u

le
s

D
T

N
B

H
M

M

SV
M

kN
N

Recognition Apps

What If explanations allow users to speculate what the

application would do given a set of user-set input values.

Model-dependent explanation types

Explanations regarding the mechanism of the decision

making process in the application are model-dependent, and

would vary depending on the model used.

Why explanations inform users why the application derived

its output value from the current (or previous) input values.

For rule-based systems, this returns the conditions (rules)

that were true such that the output was selected.

Why Not explanations inform users why an alternative

output value was not produced given the current input

values. They could provide users with enough information

to achieve the alternative output value, but not necessarily

so (e.g., see the naïve Bayes explanation algorithm later).

How To explanations answer the question "In general, how

can the application produce alternative output value X?"

This is in contrast to asking when a specific event occurs.

Certainty explanations inform users how (un)certain the

application is of the output value produced. They help the

user determine how much to trust the output value.

We omit explaining about the Situation because it is

domain specific and independent of application behavior.

We omit explaining Control because this is already covered

by Enactor Parameters [13].

INTELLIGIBILITY TOOLKIT

We have presented the four most popular context-aware

decision model types, and laid out eight explanation types

that are important for context-aware applications to provide.

Here we describe the Intelligibility Toolkit that supports the

automatic generation of these explanation types from these

decision models. Context-aware applications built with the

toolkit freely receive the capability of providing these

generated explanations to end-users. The toolkit is designed

to satisfy requirements inspired from Olsen's writings about

infrastructure evaluation [32]:

R1) Lower barrier to providing explanations. With the

toolkit, application developers do not need to know how to

generate explanations from the most popular models used in

context-aware applications. Explanation generation

algorithms and heuristics are encapsulated into the toolkit.

R2) Flexibility of using explanations. Given the simplicity

of invoking various explanation types, all types can be

generated with the same level of ease. Developers can then

concentrate on choosing the most suitable explanation for

their applications and users. This supports rapid prototyping

of providing explanation solutions to see which works best.

R3) Facilitate appropriate explanations automatically.

Even with this rapid prototyping support, we encourage the

use of appropriate explanations, particularly following the

recommendations from Lim & Dey [25] of how different

explanation types are more appropriate in various contexts.

R4) Support combining of explanations. Some explanation

types depend on other types to give a complete explanation

to the user. For example, a Why Not explanation needs to

inform the user of the set of Output values so that she

would ask only about what is possible in the application.

Other than nesting explanations, explanations can also be

combined to enhance user experience. For example,

combining the How To and What If explanations can

expedite users in finding good examples to learn how an

application works (see Figure 7, right).

R5) Generalizability across (a) explanation types; (b)

decision model types; and, (c) explanation provision.

Although the toolkit currently covers a range of eight

explanation types, four popular decision models and

methods for simplifying and presenting explanations, like

any toolkit, it is not comprehensive. The toolkit can be

extended to support (a) new explanation types and new

methods to explain the supported models (e.g., competing

methods to explain naïve Bayes are presented in [28, 34,

37]); (b) new model types (e.g., SVM, clustering) as long as

explanation generation algorithms can be developed for

them; and (c) new ways to present explanations.

Architecture

The Intelligibility Toolkit (Figure 2), implemented in Java,

leverages mechanisms in the Enactor framework [13] of the

Context Toolkit [11]. Enactors contain the application logic

of the context-aware application and contain References

that monitor the state of input Widgets. Each Reference

contains a rule and is triggered when its rule is satisfied.

This is managed automatically by the discovery mechanism

of the Context Toolkit.

We added an output property and a list of its values for the

Enactor to represent its output value, and output options.

Each output value is associated with a Reference.

Extension to support classifiers

As it was previously purely rule-based, we extended the

Enactor framework to also support machine learning

Figure 2: Architecture for handling rules and classifiers. The

Intelligibility Toolkit adds four components to the Enactor

framework of the Context Toolkit. Users ask for explanations with

Querier, and invoke Explainer to generate explanations. The

explanations may be simplified with a Reducer, and rendered

through a Presenter.

Enactor
(application logic)

Output

Value
ServiceReference

Widget

Widget

Widget

Context

Inputs
Context

Output

Output

Value
ServiceReference

Widget

Widget

Widget

PresenterReducer

Output

Action

Querier

Why Why Not How To What If

Inputs Output Certainty What Context

Intelligibility

Explainer

classifiers. In a classifier-based set up, multiple References

can be associated with a classifier, but each Reference is

associated with a different output value. Each Reference is

triggered when the classifier classifies the Widget state as

the Reference’s associated output value. We used Weka

[19] for the decision tree and naïve Bayes classifiers, and

Jahmm [15] for HMM classifiers.

Modifications to extend Intelligibility

Next, we describe four components we added to the Enactor

framework to support a wider range of intelligibility (see

architecture diagram in Figure 2).

Explainer

This is the main component of the Intelligibility Toolkit

that contains the mechanisms and algorithms to generate

explanations based on the decision model. There is a

generic Explainer that generates explanations for

model-independent types, and subclasses of Explainer for

each of the four decision models supported (see next

section on Explanation Generation Algorithms). While we

have implemented one Explainer per model, additional

Explainers can be developed to support other types of

models we have not covered, and also to generate different

explanation methods for existing model types. For example,

we implemented the weights of evidence method from [34]

to explain Bayesian models (naïve Bayes, HMM), but there

are other explanation methods that could also provide

different explanations, e.g., [28, 37]. The use of Explainers

and their standardized programming interfaces supports

requirements R1 and R2. The creation of new Explainers

for models or explanation types to plug into the toolkit

supports R5a and R5b, respectively.

Explanation Struct (Expression)

We define an explanation in terms of one or multiple

reasons (e.g., multiple reasons for Why Not). Each reason

can be a singular conditional (e.g., one certainty value for a

Certainty explanation) or a conjunction (e.g., multiple

conditionals for a Why explanation). The conditional is the

atomic unit of an explanation (e.g., certainty=90%,

temperature<24°C). Furthermore, there can be negated

conditionals (e.g., not temperature≥24°C). Formally, we

define explanations in Disjunctive Normal Form (DNF), i.e.

a disjunction (OR) of conjunctions (ANDs) of conditionals

(see Figure 3; see example in Figure 4). The standardization

of explanation information supports R4 such that there is a

standard way to pipe and feed different explanation types.

BestExplanationAdapter

We support requirement R3 by providing the

BestExplanationAdapter component. It takes in the

current context of the application (e.g., appropriateness, and

criticality) and returns the most suitable explanation types

(e.g., providing Why Not explanation of the second likeliest

inference when the system accuracy is below a threshold).

Querier

While some explanation types (Inputs, Outputs) are

constant once the application and model are defined and do

not depend on events or instances, other types depend on

what happened and what the user is asking. The base

Querier takes the current inputs and output values and is

used for explanation types What, Why, and Certainty.

AltQuerier extends Querier and includes an alternative

target output value to facilitate explanation types Why Not,

and How To. UserInputsQuerier extends Querier and

allows the setting of input values, supporting What If

explanations. Queriers can be extended to employ different

constraining mechanisms, such as querying based on time.

Formally, they allow explanations to be constrained (e.g., to

convert How To to Why) allowing for different explanation

types to be supported (requirement R5a).

Reducer

Explanations generated from Explainers may be unwieldy

to an end-user in two ways: (i) too many reasons (e.g.,

numerous ways to achieve a target output value), and (ii)

each reason being too long (e.g., numerous inputs with

required values to cause the output value). The latter case

occurs when many sensors and feature values are used to

build the models, as is the case for accurate learned

systems. Reducer components simplify the Explanation

Struct so that the explanation is more interpretable to users.

To reduce the number of reasons, we implemented two

types of DisjunctionReducers: FirstDReducer

that just takes the first conjunction in the order of

disjunctions of the explanation, and ShortestDReducer

selects the shortest conjunction reason. To reduce the length

of each reason, we implemented two types of

ConjunctionReducers: TruncationCReducer

that just truncates the conjunction reason to a specified

length (e.g., 7 conditionals), and AttributeCReducer

that filters out from the conjunction all conditionals except

those about a specified set of Widget Attributes. These

attributes can be application-specific, being most salient to

the application, most easily understood by users, or most

privacy preserving. Reducers support requirement R5c by

being extensible to support other heuristics.

Presenter

Even if the explanation is large, a developer may elegantly

present it (e.g., see Figure 7), instead of reducing it.

Explainers produce explanations in the form of Explanation

Figure 3: Schematic of explanation in Disjunctive Normal Form

(DNF), and UML diagram of Explanation Struct format to

programmatically represent explanations.

∨

∧ ∧∧ …

… … …

Output

=
Conditional
Negated Conditional

= OR, = AND ∨ ∧

Structs, and Presenters render them in a form

presentable to end-users, e.g., as text, visualization, or

interactive graphical interface. Developers can build

different Presenters to suit their target user and device form

factor (requirement R5c).

We provide the reference implementation

RulesTextPresenter that takes an Explanation Struct

from the RulesExplainer and creates a text-based

presentation based on templates (e.g., see Figure 7).

Explanations can also be presented to system components

rather than to end-users. EvidenceJsonPresenter

converts an Explanation Struct into JavaScript Object

Notation (JSON) and posts it via a HTTP server call so that

a remote client may consume the explanation.

A Presenter can also deal with combining explanations,

such as presenting Certainty information with a Why

explanation, showing Inputs for the What If explanation, or

showing Output values for the Why Not and How To.

EXPLANATION GENERATION ALGORITHMS

We describe specific algorithms we developed to generate

explanations from the four decision models that the

Intelligibility Toolkit currently supports. Some explanation

types are model-independent, and are supported by the

generic Explainer. We describe the model-independent

explanations first. Inputs explanations report the name and

definition property of each context type (Widget attribute)

used in the application. Outputs explanations report a List

of output values for Enactor. What explanations report the

current Enactor output value. To obtain input values (Input

What explanations), handles for the input contexts are

obtained via the Input explanation, and through those, the

What explanation. A What If explanation sets input context

values set by the user (through UserInputsQuerier),

and tests it on all References. It reports the output value

associated with the Reference that gets triggered. Model-

specific explanations are generated from different

Explainers for each model. Due to space constraints, our

proofs are brief, but provide enough detail for replicability.

RulesExplainer

The Enactor framework supports one rule per Reference

and we enforce one Reference per output. A decision model

with multiple output values would have multiple rules, one

per value. We make rules explainable by converting them

into DNF by recursively applying De Morgan's Law,

double negative elimination, and the distributive law. To

explain how each explanation type is generated, we shall

use the set up described in Table 1.

Why explanation

This explanation selects the rule(s) that was satisfied to

produce the actual output (e.g., see Figure 4, top). Note that

multiple rules may be simultaneously satisfied.

Why Not explanation

This explanation selects rules that would achieve the target

output value and, for each trace, identifies unsatisfied

conditionals and returns a disjunction of traces containing

these conditionals (Figure 4, bottom).

How To explanation

This explanation returns the DNF of the rule that achieves

the target output, where each trace is a rule of how to

achieve the target output value (Figure 4, bottom).

Certainty explanation

Enactor rules currently do not compute uncertainty, though

uncertainty in inputs can be propagated descriptively.

Input Conditionals Output Values

a: Activity = Sitting

b: Noise = Quiet

c: Latitude near Office's

d: Longitude near Office's

e: Schedule = In Meeting

: Availability = Yes

: Availability = Somewhat Not

: Availability = Not

Table 1. Pedagogical example of input conditionals and output

values for rule and decision tree. This describes an application to
infer a user's availability based on his activity, the noise level around him,

his proximity to his office (by latitude, longitude), and his schedule.

Input state (a, ¬b, ¬c, d, ¬e): user is sitting in a noisy place at latitude

not near the office, longitude near the office, and is not in a meeting.

Figure 4: Generating explanations from Rules in DNF.

Why available ()? Because the user is sitting (a), is located at latitude
not near his office (¬c), and is not in a meeting (¬e).

Why Not unavailable ()? Because he isn't near his office by latitude

(c), or isn't in a meeting (e).

How To infer unavailable ()? He needs to be near his office by
latitude (c) and longitude (d); or be in a meeting (e).

Figure 5: Generating from Decision Trees.

Why available ()? Because the user is sitting (a), is not located at

latitude near his office (¬c), is located at longitude near his office (d), and

is not in a meeting (¬e).

Why



∧

∨ ¬

a b
∨

e∧

c d



∨

∧

a

¬e

¬c

∧

a

¬e

¬d

∧

b

¬e

¬c

∧

b

¬e

¬d



∨

e∧

c d



∨

∧

c

d

∧

e


Why Not

 ∨

∧

c

d

∧

e


How To



a

cb

d

 e

 

 

a b ec d

Why



∨

∧

a

¬d

¬c



∧

a

d

¬c

¬e

∨



∧

a

d

¬c

e

∧

¬a

b

Why Not


∨



∧

a

d

¬c

e

∧

¬a

b

How To



J48Explainer (for Decision Tree)

This explainer generates explanations from the Weka [19]

J48 implementation of the C4.5 decision tree [35]. There

are some differences between decision trees and Enactor

rules. Decisions for inferring the output are made from the

top down, instead of from the bottom up as for rules; and

decision trees encode traces for multiple output values

within a single tree, unlike a rule-based structure. So DNF

rules are created by traversing all paths in the tree and

grouping paths by output values at their leaves. In DNF, we

can generate explanations in the same way as for rules.

Why explanation

For every classification of an instance, the tree traces a

single path to produce a Why explanation (Figure 5, top).

Why Not, and How To explanations

We retrieve the disjunction of traces that result in the target

output value, then apply respective techniques as for rules.

Certainty explanation

Decision trees are built from statistical data, so they can

model certainty from the probability distribution of

remaining data points at each leaf.

NaiveBayesExplainer

To explain the naïve Bayes classifier, we extend the idea of

weights of evidence demonstrated in [34] to multi-class

problems. This approach explains additive classifiers by

calculating an evidence score of how an instance is

classified as a certain class value. If the score is positive,

the classifier infers the class value, otherwise it infers

another class value. The evidence can be decomposed

linearly into its constituent evidences, indicating how much

each feature contributes to the inference.

We start with the posterior probability that class 𝑐 ∈ 𝐶 is

inferred from a set of 𝑁 class values given the observed

instance feature input values 𝑓:

 𝑃 𝑐 𝑓 = 𝑃 𝑐 𝑓1, 𝑓2, ⋯ , 𝑓𝑛 ∝ 𝑃(𝑐) 𝑃(𝑓𝑟 |𝑐)𝑛
𝑟=1

where fr is a feature of 𝑛 possible values. The probability is

calculated from the prior probability that a class would be

in, 𝑃(𝑐), and the conditional probabilities of each feature

value given the class, 𝑃(𝑓𝑟 |𝑐). 𝑐𝑖 is inferred over other class

values when 𝑃 𝑐𝑖 𝑓 ≥ 𝑃 𝑐𝑗 𝑓 , ∀𝑐𝑗 ∈ 𝐶. Since this is

true for all class values, we can multiply all iterations of

this inequality to get a combined expression:

 𝑃 𝑐𝑖 𝑓 𝑁
𝑗 =1 ≥ 𝑃 𝑐𝑗 𝑓 𝑁

𝑗 =1 .

Taking a logarithm gives us the evidence for the inference

 g = 𝑙𝑜𝑔 𝑃 𝑐𝑖 𝑓 𝑁
𝑗 =1 − 𝑙𝑜𝑔 𝑃 𝑐𝑗 𝑓 𝑁

𝑗 =1 = 𝑔𝑖 − 𝑔∑ ≥ 0

For brevity, we omit our working to derive the expression

g(𝑐𝑖 , 𝑟) = h + f
𝑛

𝑟=1
 (1)

where h(𝑐𝑖) = 𝑁 𝑙𝑜𝑔 𝑃(𝑐𝑖) − ℋ and ℋ = ∑ 𝑙𝑜𝑔 𝑃(𝑐𝑗)𝑁
𝑗=1 ,

f(𝑐𝑖 , 𝑟) = 𝑁 𝑙𝑜𝑔 𝑃(𝑓𝑟 |𝑐𝑗) − ℱ and ℱ = ∑ 𝑙𝑜𝑔 𝑃(𝑓𝑟 |𝑐𝑗)𝑁
𝑗=1 .

Naïve Bayes can be explained as the sum of evidence:

1. Prior probabilities of selected class value, h 𝑐𝑖

2. Due to each feature value, f(𝑐𝑖 , 𝑟)

See Figure 6 for an illustrative use of this explanation.

Why explanation

Why explanations are given in terms of weights of evidence

of contributing factors and the total evidence, g. In this

case, these factors are the predisposition, h, (prior

probabilities) and the feature evidence, f, for each input.

Why Not explanations

Suppose the user is interested in an alternative target class

value, 𝑐𝑖′, that was not inferred. We compute the evidence

for the difference between the actual and target class values

through a pairwise comparison, and knowing 𝑃 𝑐𝑖 𝑓 >

𝑃 𝑐𝑖′ 𝑓 . The evidence of why 𝑐𝑖 was inferred over 𝑐𝑖′ is

∆g 𝑐𝑖 , 𝑐𝑖′, 𝑟 = g(𝑐𝑖 , 𝑟) − g(𝑐𝑖′, 𝑟) > 0 (2)

How To explanation

This shows weights of all features due to normalized values

of the features, so the user can make sense of the general

impact of each feature. (i) For nominal features, they only

take a value of 0 or 1, so their evidence will either be 0 or f.

(ii) For naïve Bayes, numeric features are commonly

modeled by the Normal distribution; we "normalize"

numeric features to a value of one standard deviation, 𝜎𝑓|𝑐 𝑖 ,

from the feature mean given the class value: 𝜇𝑓|𝑐 𝑖 ± 𝜎𝑓|𝑐 𝑖 .

Figure 6: Why Not (Left), and How To + What If (Right)

explanations for a mobile phone physical activity recognition

application using accelerometer data trained with a naïve Bayes

classifier. The application has inferred that the user is Sitting.

How to read Why Not: The top bar indicates the average evidence

∆g > 0, i.e. more evidence for Sitting than Standing. The next bar indicates

the evidence due to prior probabilities ∆h < 0 is in favor of Standing (i.e.
user is more likely to be standing). Each of the following bars indicates the

difference in evidence for each feature, ∆f, and whether they are in favor of
Sitting or Standing.

Why Not inferred Standing but Sitting? Because (i) the prior
likelihood indicates that it is pre-disposed to inferring Standing rather than

Sitting, (ii) the values of Mean(x), Mean(y), Energy(x), Energy(y), etc,
support the inference for Sitting, while (iii) the values of Mean(z),

Energy(z), etc, support the inference for Standing. The user can interpret

that the z-axis could be instrumental to infer Standing.

How To + What If explanation: User selects values of inputs, and see

how the corresponding evidence changes along with the average overall
evidence (bar at top), to see if the threshold (vertical bar) is crossed.

Beatri
ce

Camero
n

Evelyn

≠ Standing @ Feb 27 09:46 Why Not?

Mean(x)

Mean(y)

Mean(z)

Energy(x)

Energy(y)

Energy(z)

SittingStanding

=

=

=

=

=

=

75.0

38.0

–10.0

13.0

3.0

1.0

Prior Likelihood

Beatri
ce

Camero
n

Evelyn

→ Walking @ Feb 27 09:46 How + What If?

Mean(x)

Mean(y)

Mean(z)

Energy(x)

Energy(y)

Energy(z)

WalkingNot

=

=

=

=

=

=

35.6

0.2

70.8

–8.3

10.4

10.4

Prior Likelihood

In terms of what the user can do with input values to get a

desired target output, if all values are nominal, we can

permute all combinations and return those that achieve the

target output. If multiple inputs are numeric, this becomes

intractable. Instead, we could use a How To If explanation.

How To If explanation

This provides a tractable form of How To explanations (for

nominal and numeric features) by constraining all feature

values except one. For a numeric feature that is not fixed,

we can vary the input value as it deviates from the mean

and determine the threshold at which the outcome is

achieved (or fails, if it is the opposite relation). A

generalization of this with increased interactivity is the

How To + What If explanation.

How To + What If explanation

One way to help users appreciate the influence of each

weight is to allow users to speculate on the outcome with

selected feature values. The What If explanation supports

this, but does not necessarily start with sensible values to

help users learn. The How To + What If explanation starts

with the target class value, 𝑐𝑖′, and provides a set of mean

feature values that satisfies this output, 𝜇𝑓|𝑐 𝑖 . The user can

then tweak the feature values to see if the target output

value would still be inferred (Figure 6, right).

Certainty explanation

This reports the probability of inference, 𝑃 𝑐𝑖 𝑓 .

HMMExplainer (for Hidden Markov Model)

We apply the weights of evidence approach as used for

naïve Bayes, additionally considering temporal factors.

Once an HMM is learned (parameters 𝜋, 𝐴, 𝐵 determined),

inference of the state sequence is made by calculating its

probability given an observation sequence

 𝑃 𝑥𝑖 𝑜 ∝ 𝑃(𝑥1
𝑖) 𝑃(𝑥𝑡

𝑖|𝑥𝑡−1
𝑖)𝑇

𝑡=2 𝑃(𝑜𝑡 |𝑥𝑡
𝑖)𝑇

𝑡=1

where 𝑥𝑡
𝑖 ∈ 𝑋, 𝑖 ∈ 1, 𝑁 , 𝑡 ∈ 1, 𝑇 is a state of 𝑁 possible

states at time 𝑡, in a sequence of length 𝑇, and 𝑜𝑡 is the

observation at that time. Taken together, the states represent

a sequence 𝑥𝑠 , 𝑠 ∈ 1, 𝑁𝑇 . The probability is calculated

from the prior probability that a state would be in, 𝑃(𝑥1
𝑖),

the transition probabilities between the states, 𝑃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖),

and the emission probabilities of the observations given the

states 𝑃(𝑜𝑡 |𝑥𝑡
𝑖). For detailed information on HMMs, refer to

[36]. While class and state refer to the same thing, we use

the terminology consistent with HMM literature.

𝑥𝑖 is inferred over other states when 𝑃 𝑥𝑖 𝑜 ≥ 𝑃 𝑥𝑠 𝑜 ,

∀𝑥𝑠 ∈ 𝑋. Now, if we multiply this equation with all 𝑁𝑇

permutations of 𝑠, we get 𝑃 𝑥𝑖 𝑜 𝑁𝑇

𝑠=1 ≥ 𝑃 𝑥𝑠 𝑜 𝑁𝑇

𝑠=1 .

Taking a logarithm gives us the evidence for the inference

 g = log 𝑃 𝑥𝑖 𝑜 − log 𝑃 𝑥𝑠 𝑜 𝑁𝑇

𝑠=1
𝑁𝑇

𝑠=1 = 𝑔𝑖 − 𝑔∑ ≥ 0

At this juncture, we point out that we would like to present

the evidence as a sum of feature evidences, instead of each

observation as a whole. Viewing evidences in terms of full

permutations of observations may be too difficult for end-

users to assimilate. To do so, we make the naïve assumption

(similarly used in naïve Bayes) that features are

conditionally independent of one another given any state:

𝑃 𝑜𝑡 𝑥𝑡
𝑖 = 𝑃 𝑜𝑡1

, 𝑜𝑡2
, … , 𝑜𝑡𝑛

 𝑥𝑡
𝑖 ∝ 𝑃 𝑜𝑡 𝑟

 𝑥𝑡
𝑖 𝑛

𝑟=1 .

Where 𝑜𝑡 𝑟
 is the value of feature 𝑟 of the observation at

time 𝑡, and there are 𝑛 features. With some working we get

g(𝑥𝑖 , 𝑟, 𝑡) = h + u
𝑇

𝑡=2
 + f

𝑛

𝑟=1

𝑇

𝑡=1
 (3)

where

h(𝑥𝑖) = 𝑁𝑇 log 𝑃 𝑥1
𝑖 −ℋ, and ℋ = ∑ log 𝑃(𝑥1

𝑗
)𝑁

𝑗=1
𝑇
,

u(𝑥𝑖 , 𝑡) = 𝑁𝑇 log 𝑃 𝑥𝑡
𝑖 𝑥𝑡−1

𝑖 − 𝒰, and

𝒰 = ∑ log 𝑃 𝑥𝜏
𝑗2

 𝑥𝜏−1
𝑗1

 𝑁,𝑁
𝑗1=1,𝑗2=1

𝑇−2
,

f(𝑥𝑖 , 𝑟, 𝑡) = 𝑁𝑇 log 𝑃 𝑜𝑡 𝑟
 𝑥𝑡

𝑖 −ℱ, and

ℱ = 𝑛𝑇−1 ∑ log 𝑃 𝑜𝜏 𝑟
 𝑥𝜏

𝑗
 𝑁

𝑗=1
𝑇
.

So, with the naïve assumption of independence among

features, an HMM can be explained as the sum of evidence:

1. Prior probabilities of selected state, h(𝑥𝑖)

2. Due to each state transition, u 𝑥𝑖 , 𝑡

3. Due to each feature value at sequence step, f 𝑥𝑖 , 𝑟, 𝑡

We now have terms due to time, and the evidence for

features are two-factored including time dependency. See

Figure 8 for a demonstration of this explanation. Note that

when 𝑇 = 1, then we just have the naïve Bayes explanation.

Inputs and What If explanation

Though not formally an input, these explanations should

also include state transitions. For the What If explanation,

the user may want to speculate if a previous state was

different, even though hidden states are actually inferred.

Why, Why Not, How To, and Certainty explanations

Same as for naïve Bayes, but with added evidence for time.

Reducing Dimensionality

If an application has many input features and/or a long

sequence (i.e,. large 𝑛 and/or large 𝑇), there may be too

many evidence components. To reduce this dimensionality

and make this more interpretable, we can sum evidence by

feature across time (see Figure 8), or present evidence by

time and sum evidence across features for each observation.

VALIDATION: DEMONSTRATION APPLICATIONS

To demonstrate that we can easily generate a range of

explanations from context-aware applications using the

Context Toolkit augmented with the Intelligibility Toolkit,

we built three example intelligible applications. These

examples demonstrate the use of the Intelligibility Toolkit

for a span of explanation types and model types, and also

cover a range of application domains for which the models

are popular. While the toolkit significantly contributes to

lowering the bar to providing explanations in context-aware

applications, the explanations still need to be well designed

(e.g., for various UI, interaction, and device modality), and

crafted specifically for each application problem domain.

Therefore, rather than examining different explanation

methods for the same model or application (e.g., [38]), we

built different applications for each model type to

demonstrate the generality of the Intelligibility Toolkit to

provide explanations across application domains.

IM Autostatus Plugin – Rules / Decision Tree

Rule-based and decision tree-based explanations are similar

so we only show decision tree explanations here. We built

an AIM plugin that predicts when a buddy will respond to a

message (Figure 7). It is trained on an existing dataset from

[2] to build a decision tree. It takes desktop-based sensor

inputs and makes response predictions (within/after 1 min).

We describe how we built this application in detail (the

following two applications were built in a similar fashion)

with the following procedure:

1. Create an Enactor for the overall application.

2. Create a Widget that tracks and updates all input

features (extracted from the Subtle toolkit [14]).

3. Set a pre-trained J48 decision tree classifier model to

be the Enactor's classifier.

4. Set the Enactor's list of output values to two values:

WITHIN_1_MIN and AFTER_1_MIN.

5. Create two References, (a) associate them with the

classifier and (b) associate one output value with one

Reference. The developer implements what the

application does when each Reference is triggered.

6. Create a RulesExplainer and associate with both

References.

7. Set the DisjunctionReducer and ConjunctionReducer of

the Explainer to FirstDReducer and

TruncationCReducer, respectively.

8. Create an IMAutostatusPresenter, a custom extension

of RulesTextPresenter that understands what each

feature means to provide domain-specific textual

explanations. It also handles printing an AIM message.

9. Code UI elements to invoke, on user prompt, various

getExplanation() functions from the Explainer. The

corresponding Querier needs to be supplied when

invoking each explanation type.

When the user asks for, say, a Why Not explanation about

why not WITHIN_1_MIN:

1. The UI parses his request, populates an AltQuerier

with WITHIN_1_MIN, and invokes

getExplanation(WhyNot, AltQuerier).

2. The Enactor takes the returned explanation Expression

and passes it to RulesTextPresenter that renders it for

the user as an IM response.

Mobile Physical Activity Recognizer – Naïve Bayes

The naïve Bayes application we built is a physical activity

recognizer that uses the accelerometer on a Google Android

mobile phone to infer whether the user is sitting, standing,

or walking (see Figure 6). It uses the NaiveBayesExplainer

to generate all of the explanation types, FirstDReducer and

TruncationCReducer to simplify the explanations, and

EvidenceJsonPresenter to render the explanation in a

server call. The Android application retrieves the

explanation and renders the bar chart visualization.

Home Activity Recognizer – HMM

We demonstrate explanations from an HMM model using

the dataset from [21] about domestic activity, and train a

HMM with a sequence length of 5 min, and 1 min per

sequence step. The application takes 14 binary input

sensors and infers which activity (out of 7) the user is

performing. It uses an instance of HMMExplainer to

generate all of the explanation types, FirstDReducer and

TruncationCReducer to simplify the explanations, and a

custom Presenter to exaggerate and visualize the

explanation evidences (see Figure 8).

LIMITATIONS AND DISCUSSIONS

While the Intelligibility Toolkit is extensible, the current

implementation does not cover some outstanding aspects.

(i) It does not cover the less-frequently used model types

(e.g., SVM, clustering) and does not handle ensemble

techniques of composite classifiers (e.g., bagging,

boosting). (ii) There remain some types of explanations that

users ask for that are not yet supported: e.g., how to Control

an application to change its behavior (though this is

supported with Parameters in the Enactor framework [13]),

History (when something happened/changed, trends), and

Provenance (source, credibility, and accuracy of inputs).

(iii) Often, sensed raw inputs of context-aware applications

are pre-processed, e.g., using signal processing or

computer vision techniques. Although important [33], the

toolkit does not currently capture and explain these pre-

Figure 7: IM Autostatus. Demonstration of various explanations

from an IM responsiveness prediction plugin that uses a decision

tree to predict when a buddy would respond.

Alice (5:08:03 PM): It would be so nice if something made sense for a change.
Bob (5:08:04 PM): im-autostatus>> It is likely that I will respond after 1
min.
(You may type “im-why”, “im-whynot”, “im-howto”, “im-%”, or “im-help”)

Alice (5:08:30 PM): im-why
Bob (5:08:31 PM): im-autostatus>> It is likely that I will respond after 1
min because:
1.I am more than 29 years old
2.You typed more than 3 words
3.Your message does not contain a URL
4.Your message is not a question
5.I have your IM window open but out-of-focus
(You may type “im-1”, “im-2”, “im-3”, “im-4”, “im-5”, “im-why”, “im-
whynot”, “im-howto”, “im-%”, or “im-help”)

Alice (5:09:43 PM): im-1
Bob (5:09:44 PM): im-autostatus>> I am 31 years old.

Alice (5:09:47 PM): im-%
Bob (5:09:48): im-autostatus>> It is 85.6% likely that I will respond after 1
min.

Alice (5:09:52 PM): im-whynot < 1 min
Bob (5:09:53 PM): im-autostatus>> It is likely that I will not respond within

1 min because:
1.I have been focused on a window for more than 0 sec in the last 30 sec
2.I have been moving my mouse for more than 130 events in the last 30 sec

Alice (5:10:29 PM): im-howto < 1 min
Bob (5:09:30 PM): im-autostatus>> I would respond within 1 min if:

1.The I’ve been focused on a window for less than or equal to 0 sec in
the last 30 sec

2.I have been moving my mouse for more than 130 events in the last 30 sec

3.Your IM message comprises less than or equal to 59 characters

processing mechanisms. (iv) Applications may encounter

behaviors due to the infrastructure rather than the decision

model or inputs. For example, unexpected behavior may

result from resources suddenly being unavailable due to

connectivity issues. The toolkit does not currently support

explanations about the infrastructure.

RELATED WORK IN EXPLAINING CONTEXT

The Intelligibility Toolkit supports a wide range of

explanations for multiple decision models. Previous

systems only covered a subset of the explanation types, and

only for one or one type of decision model.

The most similar framework to our toolkit is the Enactor

framework [13], on which we base our Intelligibility

Toolkit. It can provide What explanations by exposing the

state of input Widgets, and Why explanations by reporting a

relevant rule. However, it does not support the other

explanation types or any models beyond rules. The Crystal

framework [30] supports only Why / Why Not explanations

for desktop-based applications to explain themselves

through Command Objects. The Whyline [22] similarly

explains Why / Why Not to end-user programmers, by

examining the program execution tree. PersonisAD [1]

defines a distributed framework to support What

explanations by resolving identities and associations of

devices, locations, people, etc. The Intelligent Office

System [10] provides What explanations by showing the

system state, History explanations by listing the states

across time, and Why explanations about the learned cut-

points for its rules. Panoramic [44] provides Why, What,

and History explanations to explain location events through

a visualization of parallel timelines of sensed and rule-

determined events.

While the aforementioned systems provide explanations for

rules, Tullio et al. [42] explained interruptibility inferred

from decision trees and naïve Bayes with What

explanations. The Intelligibility Toolkit can provide deeper

(e.g., Why, Why Not, How To) explanations from these

models. Kulezsa et al. [24] built an intelligible email sorter

that uses naïve Bayes for classification. It provides Why,

Why Not, and What If explanations based on the weights of

evidence approach [34]. The Intelligibility Toolkit also uses

this approach, and adds more explanation types, supports

numeric input features, extends it for HMMs, and has been

developed to be extensible.

CONCLUSION AND FUTURE WORK

We have presented the Intelligibility Toolkit that currently

provides automatic generation of eight explanation types

(Inputs, Outputs, What, What If, Why, Why Not, How To,

Certainty) for the four most popular decision model types

(rules, decision trees, naïve Bayes, hidden Markov models)

in context-aware applications. It supports the generation of

explanation structures (through Explainers), querying

mechanisms to specify questions and constrain explanations

(through Queriers), simplifying complex explanations

(through Reducers), and presenting the explanations to end-

users and other subsystems (through Presenters). The

toolkit is also extensible to support new explanation types,

model types, reduction heuristics, and presentation formats.

The Intelligibility Toolkit makes it easier for developers to

provide many explanation types in their context-aware

applications. This ease also allows developers to perform

rapid prototyping of different explanation types to discern

the best explanations to use and the best ways to use them.

In addition to addressing the limitations outlined earlier, we

will use the Intelligibility Toolkit, to pursue further research

questions regarding the intelligibility of context-aware

applications. In particular, we can investigate and compare

the efficacy of various explanation types, by measuring

how well each type helps users to understand the

application, and improve their trust in the application. We

also plan to deploy an intelligible application with multiple

explanation types, and multiple context types (e.g., location,

physical activity), and conduct a longitudinal evaluation of

the impact of intelligibility and how well it improves

understanding or corrects misunderstanding.

ACKNOWLEDGMENTS

This work was funded by the National Science Foundation

under grant 0746428, and the Agency for Science

Technology And Research, Singapore. We also thank

Stephanie Rosenthal, Somchaya Liemhetcharat, Jen

Mankoff, Zhiquan Yeo, Andreas Möller, Brian Ziebart,

Matt L. Lee, and Bryan Pendleton for their helpful advice.

Figure 8: Demonstration of Why explanation visualization

from an application using a HMM to model domestic activity.

This explains why the application inferred a sequence of Sleeping →

Toilet → Toilet → Breakfast → Breakfast in the last 5 min. Evidence due
to features (summed across the last 5 min) are indicated by the area of

bubbles around the corresponding sensors in the floorplan. Evidence for

each sensor across time is revealed in a tooltip.

We can see that the Hall Bedroom Door being open is a strong indicator of
inferring the sequence. The door being open is a stronger indicator than it

being closed 4 min ago. The microwave is another strong indicator

(biggest bubble in top right corner).

REFERENCES

1. Assad, M. et al. (2007). PersonisAD: Distributed, Active,

Scrutable Model Framework for Context-Aware Services.

Pervasive 07, 55-72.

2. Avrahami, D. & Hudson, S.E. (2006). Responsiveness in

Instant Messaging: Predictive Models Supporting Inter-

Personal Communication. CHI 06, 731-740.

3. Bardram, J. E. (2005). The Java Context Awareness

Framework (JCAF) – A Service Infrastructure and

Programming Framework for Context-Aware Applications.

Pervasive 05, 98-115.

4. Barkhuus, L. & Dey, A.K. (2003). Is context-aware computing

taking control away from the user? Three levels of

interactivity examined. Ubicomp 03, 149–156.

5. Bellotti, V. & Edwards, W.K. (2001). Intelligibility and

Accountability: Human Considerations in Context-Aware

Systems, Human-Computer Interaction, 16(2-4): 193-212.

6. Borriello, G. et al. (2004). Reminding About Tagged Objects

Using Passive RFIDs. Ubicomp 04, 36-53.

7. Bulling, A., Ward, J. A., Gellersen, H., & Tröster, G. (2008).

Robust Recognition of Reading Activity in Transit Using

Wearable Electrooculography. Pervasive 08, 19-37.

8. Chang, K., Hightower, J., & Kveton, B. (2009). Inferring

Identity Using Accelerometers in Television Remote Controls.

Pervasive 09, 151-167.

9. Chang, K., Chen, M. Y., & Canny, J. (2007). Tracking Free-

Weight Exercises. Ubicomp 09, 19-37.

10. Cheverst, K.. et al. (2005). Exploring issues of user model

transparency and proactive behavior in an office environment

control system. UMUAI 05, 15(3-4), 235-273.

11. Dey, A.K., Abowd, G.D. & Salber, D. (2001). A conceptual

framework and a toolkit for supporting the rapid prototyping of

context-aware applications. Human-Computer Interaction,

16(2–4): 97–166.

12. Dey, A. K. & de Guzman, E. (2006). From awareness to

connectedness: the design and deployment of presence displays.

CHI 06, 899-908.

13. Dey, A. K. & Newberger, A. (2009). Support for context-

aware intelligibility and control. CHI 09, 859-868.

14. Fogarty, J. & Hudson, S. E. (2007). Toolkit support for

developing and deploying sensor-based statistical models of

human situations. CHI 07, 135-144.

15. Franois, J.M. (2010). Jahmm: An implementation of Hidden

Markov Models in Java. http://code.google.com/p/jahmm/.

Retrieved 9 Mar 2010.

16. Froehlich, J. et al. (2009). UbiGreen: investigating a mobile

tool for tracking and supporting green transportation habits.

CHI 09, 1043-1052.

17. Gregor, S. & Benbasat, I. (1999). Explanations From

Intelligent Systems: Theoretical Foundations and Implications

for Practice. MIS Quarterly 23(4): 497–530.

18. Gu, T., Pung, H. K., & Zhang, D. Q. (2005). A service-

oriented middleware for building context-aware services.

Journal of Network and Computer Applications, 28(1), 1-18.

19. Hall, M. et al. (2009). The WEKA Data Mining Software: An

Update. SIGKDD Explorations 09, 11(1), 10-18.

20. Herlocker, J., Konstan, J. & Riedl, J. (2000). Explaining

collaborative filtering recommendations. CSCW 00, 241-250.

21. Kasteren, T. L. M. et al. (2008). Accurate Activity

Recognition in a Home Setting. Ubicomp 08, 1-9.

22. Ko, A. J. & Myers, B. A. (2009). Finding causes of program

output with the Java Whyline. CHI 09, 1569-1578.

23. Kofod-Petersen, A., & Mikalsen, M. (2005). Context:

Representation and reasoning – Representing and reasoning

about context in a mobile environment. Revue d’Intelligence

Artificielle, 19, 479–498.

24. Kuleza, T. et al. (2009). Fixing the Program My Computer

Learned: Barriers for End-users, Challenges for the Machine.

IUI 09, 187-196.

25. Lim, B. Y., Dey, A. K. (2009). Assessing Demand for

Intelligibility in Context-Aware Applications. Ubicomp 09,

195-204.

26. Lim, B. Y., Dey, A. K. & Avrahami, D. (2009). Why and why

not explanations improve the intelligibility of context-aware

intelligent systems. CHI 09, 2119-2128.

27. McGuinness, D. et al. (2007). A Categorization of Explanation

Questions for Task Processing Systems. AAAI Workshop on

Explanation-Aware Computing (ExaCt-07).

28. Mozina M. et al. (2004). Nomograms for Visualization of

Naive Bayesian Classifier. PKDD 2004, 337-348.

29. Muir, B. (1994). Trust in automation: Part i. theoretical issues

in the study of trust and human intervention in automated

systems. Ergonomics, 37(11): 1905–1922.

30. Myers, B. A. et al. (2006). Answering why and why not

questions in user interfaces. CHI 06, 397-406.

31. Newcomb, E., Pashley, T., & Stasko, J. (2003). Mobile

computing in the retail arena. CHI 03, 337-344.

32. Olsen, D. R. (2007). Evaluating user interface systems

research. UIST 07, 251-258.

33. Patel, K. et al. (2008). Investigating Statistical Machine

Learning as a Tool for Software Development. CHI 08, 667-

676.

34. Poulin, B. et al. (2006). Visual explanation of evidence in

additive classifiers. IAAI 06, 1822-1829.

35. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning.

Morgan Kaufmann Publishers.

36. Rabiner L. R. (1989). A tutorial on hidden Markov models and

selected applications in speech recognition. Proceedings of the

IEEE, 77(2):257–286, 1989.

37. Robnik-Šikonja, M. & Kononenko, I. (2008). Explaining

Classifications For Individual Instances. IEEE Transactions on

Knowledge and Data Engineering, 20(5): 589-600.

38. Stumpf, S. et al. (2009). Interacting meaningfully with

machine learning systems: Three experiments. International

Journal of Human-Computer Studies, 67(8), 639-662.

39. Tapia, E. M., Intille, S. S., Larson, K. (2004). Activity

Recognition in the Home Using Simple and Ubiquitous

Sensors. Pervasive 04, 158-175.

40. Terada, T. et al. (2004). Ubiquitous Chip: A Rule-Based I/O

Control Device for Ubiquitous Computing. Pervasive 04, 238-

253.

41. Tsukada, K. & Yasumura, M. (2004). ActiveBelt: Belt-Type

Wearable Tactile Display for Directional Navigation. Ubicomp

04, 384-399.

42. Tullio, J. et al. (2007). How it works: A field study of non-

technical users interacting with an intelligent system. CHI 07,

31-40.

43. Weiser, M. & Brown, J. S. (1997). The coming age of calm

technology. Beyond Calculation: the Next Fifty Years, 75-85.

44. Welbourne, E., Balazinska, M., Borriello, G., Fogarty, J.

(2010). Specification and Verification of Complex Location

Events. Pervasive 10, 57-75.

45. Zheng, Y. et al. (2008). Understanding mobility based on GPS

data. Ubicomp 08, 312-321.

http://www.science.uva.nl/~tlmkaste/images/pdf/kasterenUbicomp08.pdf
http://www.science.uva.nl/~tlmkaste/images/pdf/kasterenUbicomp08.pdf

