
Why and Why Not Explanations Improve the Intelligibility 
of Context-Aware Intelligent Systems 

Brian Y. Lim, Anind K. Dey Daniel Avrahami 

Carnegie Mellon University 

5000 Forbes Ave., Pittsburgh, PA 15213, USA 

{byl, anind}@cs.cmu.edu 

Intel Research Seattle 

1100 NE 45th St., Seattle WA 98105, USA 

daniel.avrahami@intel.com 
 

ABSTRACT 

Context-aware intelligent systems employ implicit inputs, 

and make decisions based on complex rules and machine 

learning models that are rarely clear to users. Such lack of 

system intelligibility can lead to loss of user trust, 

satisfaction and acceptance of these systems. However, 

automatically providing explanations about a system‟s 

decision process can help mitigate this problem. In this 

paper we present results from a controlled study with over 

200 participants in which the effectiveness of different 

types of explanations was examined. Participants were 

shown examples of a system‟s operation along with various 

automatically generated explanations, and then tested on 

their understanding of the system. We show, for example, 

that explanations describing why the system behaved a 

certain way resulted in better understanding and stronger 

feelings of trust. Explanations describing why the system 

did not behave a certain way, resulted in lower 

understanding yet adequate performance. We discuss 

implications for the use of our findings in real-world 

context-aware applications. 

Author Keywords 

Intelligibility, context-aware, explanations 

ACM Classification Keywords 

H5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous.  

INTRODUCTION 

Over the past 20 years many attempts have been made to 

achieve Weiser‟s vision of ubiquitous computing [26] 

through continued advancements in context-aware 

computing [23]. Context-aware intelligent systems adapt 

and tailor their behavior in response to the user‟s current 

situation (or context), such as the user‟s activity, location, 

and environmental conditions. Most such systems employ 

complex rules or machine learning models. With the goal of 

calm computing [27], these systems rely on implicit input 

often collected without user involvement. Thus users of 

context-aware applications can have great difficulty 

reasoning about system behavior [6,7]. Such lack of system 

intelligibility (in particular if a mismatch between user 

expectation and system behavior occurs) can lead users to 

mistrust the system, misuse it, or abandon it altogether [19]. 

One mechanism to alleviate this lack of intelligibility in 

intelligent context-aware systems is through automatically 

generated explanations. This approach has been shown to 

be effective in other domains such as decision making [12] 

and recommender systems [15] where providing 

explanations led to increased trust and acceptance. 

Commercial applications, such as Amazon‟s product 

recommender system or Pandora‟s music recommender 

now integrate explanations into their interfaces. 

The use of explanations has been studied extensively in the 

area of Knowledge-Based Systems (for a review, see [14]). 

Unlike in most context-aware applications, however, 

knowledge-based systems typically focus on supporting 

expert users trying to gain expert knowledge of a domain. In 

contrast, our aim is to explore how providing explanations 

to novice end-users can help improve their understanding of 

novel context-aware systems. We expect that this 

improvement in understanding would result in improved 

user trust of the system, and lead to ready and rapid 

acceptance and adoption of these nascent technologies. 

Cheverst et al. explored the development and initial user 

experience of a decision-tree, rule-based, personalizable 

office control application that was transparent and provided 

explanations to users. They learned many issues relevant to 

their specific application, but did not investigate the effects 

specific to explanations or their impact on users, and had 

only a handful of participants.  

In this paper we describe a detailed investigation of a 

number of mechanisms for improving system intelligibility 

performed using a controlled lab study. To investigate these 

intelligibility factors and their effects, we defined a model-

based system representing a canonical intelligent system 

underlying a context-aware application, and an interface 

with which users could learn how the application works. 

We recruited 211 online participants to interact with our 

system, where each one received a different type of 

explanation of the system behavior. Our findings show that 

explaining why a system behaved a certain way, and 

explaining why a system did not behave in a different way 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. 

CHI 2009,   April 4–9, 2009, Boston, MA, USA. 
Copyright 2009 ACM  978-1-60558-246-7/08/04…$5.00 

 

 



 

provided most benefit in terms of objective understanding, 

and feelings of trust and understanding compared to other 

intelligibility types.  

The paper is organized as follows: We first define a suite of 

intelligibility explanations derived from questions users 

may ask of a context-aware system and that can be 

automatically generated. We then describe an online lab 

study setup we developed to compare the effectiveness of 

these intelligibility types in a quick and scalable manner. 

Next we describe the experimental setup used to expose 

participants to our system with different types of 

intelligibility and the metrics we used to measure 

understanding, and users‟ perception of trust, and 

understanding. We present two experiments in which we 

investigated these factors, elaborating on the results and 

implications. We end with a discussion of all of our results 

and plans for future work. 

INTELLIGIBILITY 

Much work has been conducted on the generation and 

provision of explanations, particularly in the domain of 

knowledge-based systems (KBS) [14] and intelligent 

tutoring systems (ITS) [2]. Gregor and Benbasat [14] 

present a review of explanations, identifying several 

constructs often used to generate explanations. In KBS, 

content type can be classified into a number of categories: 

reasoning trace (providing the line of reasoning per case), 

justification (attaching “deep” domain knowledge), 

strategic (system‟s problem solving strategy), and 

terminology (term definitions). In our work, we are 

particularly interested in the types of explanations that will 

be most helpful to end-users of context-aware applications.  

Context-aware systems can form user confusion in a 

number of ways. For example, such systems may not have 

familiar interfaces, and users may not understand or know 

what the system is doing or did. Furthermore, given that 

such systems are often based on a complex set of rules or 

machine learning models, users may not understand why 

the system acted the way it did. Similarly, a user may not 

understand why the system did not behave in a certain way 

if this alternative behavior was expected. Thus, our focus in 

the work presented here is on explanations that can be 

regarded as reasoning traces.  

While a reasoning trace typically addresses the question of 

why and how the application did something, there are 

several other questions that end-users of novel systems may 

ask. We chose to look into the following questions (adapted 

from [11]): 

1. What: What did the system do? 

2. Why: Why did the system do W? 

3. Why Not: Why did the system not do X? 

4. What If: What would the system do if Y happens? 

5. How To: How can I get the system to do Z, given the 

current context? 

Throughout this paper we will refer to these as our 5 

intelligibility questions, and the explanations addressing 

each of them as intelligibility type explanations. 

Norman described two gulfs separating users‟ goals and 

information about system state [21]. Explanations that 

answer questions 1 to 3 address the gulf of evaluation (the 

separation between the perceived functionality of the 

system and the user‟s intentions and expectations), while 

explanations answering questions 4 and 5 address the gulf 

of execution (the separation between what can be done with 

the system and the user‟s perception of that). With a partial 

conception of how a system works, users may want to know 

what would happen if there were some changes to the 

current inputs or conditions (question 4). Similarly, given 

certain conditions or contexts, users may want to know 

what would have to change to achieve a desired outcome 

(question 5).  

Some research has looked into providing explanations for 

these questions. The Whyline [16] and Crystal application 

framework 20] provide explanations that answer Why and 

Why Not intelligibility questions for novice programmers 

and desktop users respectively, but the effectiveness of 

these explanation types were not compared. In KBS, several 

expert systems (e.g., MYCIN [9]) provided reasoning trace 

explanations to support Why, Why Not and How To 

questions, but the comparative benefits of these were not 

compared. Instead, follow-up research in KBS has focused 

on providing justification explanations for the reasoning 

trace, and explaining problem-solving strategy used. Since 

context-aware systems are not primarily about inferring 

decisions from deep knowledge bases, we keep our focus 

on reasoning trace explanations.  

This paper deals with providing and comparing the value of 

explanations that address four of these intelligibility 

questions to investigate which of these explanations benefit 

users more. We label these intelligibility types: Why, Why 

Not, What If, and How To. Since the system we developed 

to evaluate the value of explanations, already explicitly 

shows the inputs and output of the system (see next Section 

on Intelligibility Testing Infrastructure), Question 1 of the 

five intelligibility questions (What the system did) could not 

be investigated in this study.  

Hypotheses 

We hypothesize that different types of explanations would 

result in changes in users‟ user experience: understanding 

of the system and perceptions of trust and understanding of 

the system. We will now present our hypotheses about each 

of these intelligibility questions. 

Why explanations will support users in tracing the causes of 

system behavior and should lead to a better understanding 

of this behavior. So, we expect: 

H1: Why explanations will improve user experience over 

having no explanations (None).  

Why Not explanations should have similar benefits to Why 

explanations; however, users‟ ability to apply Why Not 



explanations may not be as straightforward. There may be 

multiple reasons why a certain outcome did not happen; 

while a why explanation may be a single reasoning trace (or 

at least a small number of possible traces), a why not 

explanation is likely to contain multiple traces. Given this 

complexity, users would require more cognitive effort to 

understand how to apply the knowledge, and may do so 

poorly.  As such, we expect: 

H2: Why Not explanations will (a) improve user experience 

over having no explanations (None), but (b) will not 

perform as well as Why explanations.  

Explanations for How To and What If questions would 

have to be interactive and dynamic, as they depend on 

example scenarios that users define themselves. Receiving 

these explanations should be better than receiving none at 

all. However, given that novice end-users are unlikely to be 

familiar with a novel system, they may choose poor 

examples to learn from, and learn less effectively than the 

Why explanations. So we expect: 

H3: How To or What If explanations will (a) improve user 

experience over having no explanations (None), but (b) will 

not perform as well as Why explanations. 

To test these hypotheses, we created a test-bed that allows 

simulating different types of intelligent systems and testing 

different explanation types. We describe this testing 

infrastructure next.  

INTELLIGIBILITY TESTING INFRASTRUCTURE 

We developed a generalizable web interface that can be 

applied to various application domains to study the effect of 

the various mechanisms for providing intelligibility. Users 

interact with a schematic, functional intelligible system that 

could underlie a context-aware application: it accepts a set 

of inputs (e.g. Temperature, Humidity), and uses a model 

(for example, a decision-tree), to produce a single output 

(e.g., Rain Likely, or Rain Unlikely). Users are shown 

different instances of inputs and outputs and can be given 

various forms of explanations (or no explanations) 

depending on what intelligibility type is being studied. To 

users who do not receive explanations, the system appears 

as a black box (only inputs and the output are visible). 

This infrastructure allows us to efficiently and rapidly 

investigate different intelligibility factors in a controlled 

fashion and closely measure their effects; further, the online 

nature of the infrastructure allowed us to collect data from 

over two hundred participants. The design also has the 

advantage of being generalizable to a variety of different 

domains simply by relabeling its inputs and outputs to 

represent scenarios for those domains. 

System Implementation 

The web interface was developed using the Google Web 

Toolkit [13]. We leverage Amazon‟s Mechanical Turk 

infrastructure [1] to recruit and manage participants and 

manage study payments by embedding our study interface 

in the Mechanical Turk task interface. Users found our 

study through the listings of Human Intelligence Tasks 

(HITs), and after accepting our HIT, they participated in the 

study and interacted with the system. 

The user encounters several examples of system inputs and 

output (see Figure 1). He first sees the input values listed 

and has to click the “Execute” button so the system 

„generates‟ the output. When he is done studying the 

example, he clicks the “Next Example” button to move on. 

Depending on the explanation condition the user is in, he 

may receive an explanation about the shown example (our 

system also supports explanations only being shown upon 

user request, or On Demand). 

We modeled our testing infrastructure on typical sensor-

based context-aware systems that make decisions based on 

the input values of multiple sensors. Many of these sensors 

produce numeric values and the applications change their 

behaviors based on threshold values of the sensors. For 

example, a physical activity recognition system could look 

at heart rate and walking pace. To keep our experiments 

and the task reasonably simple for participants we restricted 

the system to three input sensors that produce numeric 

values, we used inequality-based rules to define the output 

value, and constrained the output to belonging to one of two 

classes. In Experiment 1, for example, we defined two 

inequality rules that consider two inputs at a time (see 

Figure 2). Since we did not want the lack of domain 

knowledge (e.g., that the body temperature can rise from 

36.8 to 38.3°C when weight lifting) to affect users‟ 

understanding of the system, so the inputs use an arbitrary 

scale of integer values: Body Temperature from 1 to 10, 

and Heart Rate and Pace from 1 to 5.  

As machine learning algorithms are popular in context-

aware applications, our system also uses machine learning. 

Among the myriad of machine learning algorithms, 

decision trees and Naïve Bayes lend themselves to be more 

explainable and transparent, while others are black-box 

algorithms that are not readily interpretable (e.g., Support 

Vector Machines and Neural Networks) [22]. We chose to 

 

Figure 2. Inequality-based rules for physical activity domain. 

 

 

 

Figure 1. Screenshot of the interface for our intelligibility 

 testing infrastructure. 



 

start our investigation using the more simple decision trees 

with inequality rules because they are popular among 

context-aware systems (e.g. [5, 8]), and are easier to 

explain, especially to end-users who may not understand 

the probabilistic concepts that underlie Naïve Bayes 

algorithms. Using an implementation of the C4.5 Decision-

Tree algorithm [27], our system learns the inequality rules 

from the complete dataset of inputs (250 instances from the 

permutations of all inputs) and outputs and models a 

decision tree (see Figure 3) that is used to determine the 

output value.  

Decision Tree Explanations 

While the decision tree is able to classify the output value 

given input values, we had to extend it to expose how the 

model is able to derive its output. The decision tree model 

lends itself nicely to providing explanations to the four 

intelligibility type questions. Table 1 describes how the 

explanations were implemented.  

METHOD: EXPERIMENTS 

Given the different factors we wanted to investigate and the 

flexibility of our testing infrastructure, we were able to 

independently test different intelligibility elements in a 

series of experiments. We made the tradeoff of conducting 

controlled, yet simple, experiments with a large number of 

subjects that we could generalize from, over studying more 

realistic, yet more complex situations. We ran Experiment 1 

to explore providing different types of intelligibility 

explanations (Why, Why Not, and the control condition 

with no explanations). The system was presented in the 

context of the domain of activity recognition of exercising 

as described above. However, due to participants‟ prior 

knowledge of the domain, our results were difficult to 

interpret. So, we decided to subsequently run experiments 

with an abstract domain. Experiment 2 compares 

explanations provided to address each of the four 

intelligibility type questions (Why, Why Not, How To, and 

What If) individually to investigate which are more 

effective in helping users gain an understanding of how our 

intelligent system works compared to not having 

explanations (None).  

Study Procedure  

Our study consists of four sections. The first section 

(Learning) allows participants to interact with and learn 

how the system works. Two subsequent sections test the 

participants‟ understanding of the system (Fill-in-the-

Blanks Test and Reasoning Test), and a final section 

(Survey) that asks users to explain how the system works 

(to evaluate the degree to which participants have learned 

about the system‟s logic) and to report their perceptions of 

the explanations and system in terms of understandability, 

trust and usefulness.  

Learning Section 

In the Learning section, participants are shown 24 examples 

with inputs and output values (see Figure 1). These 

examples were chosen from all possible input instances, to 

have an even distributed over all branches in the decision 

tree, and they appear in the same order to all participants. 

Examples were arranged in ascending order of Body 

Temperature, then of Heart Rate, then of Pace. Participants 

have to spend at least 8 seconds per example (controlled by 

disabling the Next Example button). Explanations are 

provided depending on the experimental condition. If 

participants receive explanations, they will receive them 

automatically when executing each example. It is important 

to note that explanations are only provided during the 

 

Figure 3. Visualization of the learned decision tree model used 

in Experiment 2. 

 

Why: Walk the decision tree to trace a path of decision boundaries and values that match the instance being looked at. Return a list of 

inequalities that satisfies the decision trace of the instance (e.g., “Output classified as Not Exercising, because Body Temperature≤5 and 

Pace ≤3”; see Figure 2). 

Why Not: Walk the whole tree initially to store in memory all the traces that can be made. Walk the tree to find the why-trace, and find 

differing boundary conditions on all other traces that return the alternative output. A why-not trace would contain the boundary 

conditions that match the why trace and boundary conditions where it is different (e.g., “Output not classified as Exercising, because 

Pace≤3, but not Body Temperature>5”). A full Why Not explanation would return the differences for each trace that produces the 

alternative output. However, so as not to overwhelm the user, we use a heuristic to return the differences of just one why-not trace, the 

one with the fewest differences from the why trace. Note that while this technique is suitable for small trees, it is not scalable to large 

trees, and heuristics should be used to look at subsets of traces. 

How To: Take user specified output value, and values of any inputs that were specified. Iterate through all traces of the tree to find 

traces that end with the specified output value and has branches that satisfy the specified input values. If any trace is found, it identifies 

the satisfying boundary conditions for the unspecified inputs and returns them. Note that if there is a trace, there will only be one, since 

an instance can only satisfy one trace in the tree. If there are no boundary conditions for the unspecified inputs, then these inputs can 

take any value. If no trace is found, then there are no values for the unspecified inputs, given values of the specified inputs, to produce 

the desired output value. 

What If: Take user‟s inputs and puts it through the model to classify the output. Return the output value, but since this is a simulation, 

do not take any action based on this output value. 

Table 1. Algorithms for generating different types of intelligibility explanations from a decision tree model. 



Learning section. Participants are told that their task is to 

learn how the system works and are encouraged to take 

notes using a dedicated text box that persists throughout the 

Learning section. At the end of the Learning section, users 

are told to spend some time studying their notes as those are 

not available during the rest of the study. 

Fill-in-the-Blanks Test Section 

This section tests users on their ability to accurately specify 

a valid set of inputs or output; they are given a single blank 

in one of the inputs or the output, and are given the rest of 

the inputs/output. There are 15 test cases, three with blank 

Body Temperature, three with blank Heart Rate, four with 

blank input Pace, and 5 with blank output. These test cases 

different from the earlier examples, and are randomly 

ordered, but in the same order for all participants. On seeing 

each test case, users have to fill in the missing input or 

output with a value that makes the test case correct. If an 

input is missing, they should provide a value that causes the 

given output value to be produced; if the output is missing, 

they provide a value that would be produced with the given 

input values. After providing the missing value, they are 

also asked to provide a reason for their response. 

Participants are not given any explanations during this test 

and, are not given the answer or told whether they are 

correct after they finish.  

Reasoning Test Section 

This section shows users three complete examples, and, for 

each example, asked to give reasons why the output was 

generated, and why the alternative output was not. These 

test case examples are different from what users have 

encountered before, and are randomly ordered, but are in 

the same order for all participants. To see if improved 

understanding can lead to improved trust, users are also 

asked how much they trust that the output of the system is 

correct for each example. Participants are not given any 

explanations during the test and, are not given the answer 

after they finish. 

Survey Section 

The final Survey section is used to collect self-report 

information from users. Users provide a more detailed 

description of how they think the system works overall (i.e., 

an elicitation of their mental models), and are asked several 

Likert-scale questions to obtain an understanding of how 

users feel about using our system, including whether they 

trusted and understood the system and explanations. 

Measures 

In order to see what types of intelligibility explanations 

would help users better understand the system, and whether 

this improved understanding would lead to better task 

performance, improved perception of the system, and 

improved trust in the system output, a number of measures 

were collected. 

Task performance was measured in terms of task 

completion time, and the Fill-in-the-Blanks Test inputs and 

output answer correctness. Task completion time was 

measured with two metrics: total learning time in the 

Learning section, and average time to complete each Fill-

in-the-Blanks Test question.  

User understanding is measured by the correctness and 

detail of the reasons participants provide when they give 

their answers (in the Fill-in-the-Blanks Test), explain 

examples (in the Reasoning Test), or give an overall 

description of how the system works (mental model in the 

survey). The reasons given for each answer in the Fill-in-

the-Blanks Test were coded using a rubric (see Table 2) to 

determine how much the participant understands about how 

the system works. Reasons are coded as 

Guess/Unintelligible if participants wrote they were 

guessing, did not write anything, or wrote something not 

interpretable. Reasons are graded as Some Logic if 

participants provided some rules or probability statement or 

cited past experience (e.g., saying they saw something 

similar before) that were not inequalities with fixed numeric 

boundaries. This includes cases such as “Body 

Temperature>Heart Rate”. Reasons are coded as Inequality 

if participants specified an inequality of at least one of the 

inputs with a fixed numeric boundary (e.g., Body 

Temperature>7). Reasons are coded as Partially Correct if 

participants provided only one rule with the correct input, 

boundary value, and relation. Reasons are coded as Fully 

Correct if participants get only all the sufficient rules 

correct, and did not list any extra ones. Each reason was 

coded with only a single grade (i.e., the highest appropriate 

grade). 

There are two inequality rules (e.g., Pace>3, and Heart 

Rate>1) for each test case or example, so answer reasons 

for the Fill-in-the-Blanks Test have two components. We 

measure how many of these components participants learn 

using three coding metrics that count (i) the number of 

inputs the participant mentions as relevant in the reasons, 

(ii) the number of correct rules described, and (iii) the 

number of extraneous rules mentioned (0 or 1). 

The reasons for the why and why not questions that 

participants provided in the Reasoning Test were coded 

using a rubric similar to Table 1. We also recorded, on a 

five-point Likert-scale the participant‟s level of trust of the 

correctness of the outputs for each example in the 

Reasoning Test. 

In the survey, we asked participants to describe their overall 

understanding of how the system works. This mental model 

understanding is coded in a similar manner to why reasons, 

but not applied to specific examples.  

Guess/Unintelligible No reason given, guessed, or reason incoherent 

Some Logic Some math/logic rules, probability, or citing past 

experience 

Inequality Correct Type of rules which are inequalities of 
inputs with fixed numbers 

Partially Correct Some, but not all, of the correct rules, or extra ones 

Fully correct All correct rules, with no extra unnecessary ones 

Table 2. Grading rubric for coding free-form reasons given 

by participants. Mental Models were coded using this same 

rubric. 



 

We did a factor analysis on the 16 Likert-scale questions of 

system and explanation perceptions in the survey and 

derived 6 factors. 10 questions on the system are grouped 

into 3 factors: Understood System, Found System 

Confusing, Liked System/Found it useful. 6 questions on 

explanations are grouped into 3 factors: Explanations 

Difficult, Explanations Useful, Understood Explanations. 

EXPERIMENT 1 

Our first experiment focused on providing answers to 

hypotheses H1, and H2; whether Why explanations would 

lead to improved user understanding, trust, perception, and 

performance more than having no explanations, and H2 

regarding providing Why Not explanations being better 

than no explanations, but not as good as Why explanations. 

We chose the domain of activity recognition of exercise, 

which users would have a reasonable understanding of. 

Mapping to the generalized abstract system described 

earlier, the system takes on the role of a wearable device 

that can measure the wearer‟s Body Temperature, Heart 

Rate, and walking/running Pace, and classify whether the 

wearer is exercising or not (Figure 2).  The first rule can be 

satisfied during strength training (e.g., weight lifting) that 

does not require much walking about, but can raise body 

temperature, while the second rule can be satisfied by 

running.  

Participants in the no explanation (None) condition did not 

receive any explanations, and could only execute each 

example and move on. Participants in the Why condition 

receive Why explanations automatically along with the 

output value when they execute each example by clicking 

the “Execute” button. Participants in the Why Not condition 

receive a Why Not explanation in place of a Why 

explanation. 

Participants 

53 participants were recruited. There were 18 participants 

in the None condition, 18 in the Why condition, and 17 in 

the Why Not condition. 39 of the participants completed the 

demographics survey showing 20 were female and 19 males 

with ages ranging from 18 to 57 (M=29.8), and education 

levels ranging from less than high school to post-graduate 

degrees. We removed from the analysis any responses of 

participants who took fewer than 15 minutes (one 

participant in the None condition) or longer than 50 minutes 

to complete the four sections. This was done to filter out 

participants who just click through the steps without 

thinking, and to leave out participants who may be 

distracted while performing the task and take too long. On 

average, participants took 34 minutes to complete the study. 

Participants were each given $3 for completing the study 

($1 base and a $2 bonus to motivate performance). A 

further $2 was offered to a few participants who 

participated in interviews conducted soon (up to a few 

days) after completing the task. 

Results 

To analyze participants‟ ability to apply their 

understanding, the number of correct answers per 

participant was summed and a Tukey HSD pair-wise test 

was performed. The number of correct answers was the 

dependent measure. The analysis showed significant 

differences in accuracy between intelligibility types 

(F[2,84]=8.85, p<.001; see Figure 4). To analyze 

participants‟ ability to formalize their understanding, their 

reasons were coded using the rubric in Table 1 and dummy 

variables were generated indicating: Inequality or better (0 

or 1), Partially or Fully Correct (0 or 1), and Fully Correct 

(0 or 1). The analyses were done with the reason coding as 

the dependent measure and with condition as a fixed effect. 

Participants were modeled as a random effect and nested 

within condition. A Tukey HSD pair-wise test of the 

occurrences of each coded score shows that providing 

explanations leads to more correct answers than not 

providing any (contrast of None with Why and Why Not: 

F[1,50]=15.1, p<.001). However, there was no significant 

difference in the number of correct answers between Why 

and Why Not type explanations.  

Using the grading rubric in Table 1 on the Why reasons 

provided in the Fill-in-the-Blanks Test, we found that 

participants in the Why and Why Not conditions were able 

to produce more Partially Correct reasons compared to 

those in the None condition (F[1,50]=27.4, p<.001) (see 

Figure 5). Participants in the Why condition produced more 

Fully Correct reasons compared to None and Why Not 

(F[1,50]=10.8, p<.002). There were no significant 

differences between Why and Why Not. A similar pattern 

was found in the Reasoning Test section Participants in the 

Why condition had a higher level of trust than those in 

None (F[1,49]=8.98, p<.005), while those in the Why Not 

condition did not. The survey measures on overall mental 

model or perceptions of the system and explanations did not 

reveal significant differences. 

Discussion and Implications 

The generally poor trust in the system could be due to 

occasional examples that follow the system rules, but may 

not be „natural‟ (e.g., high Body Temperature and low pace 

predicted as “Not Exercising”). The answer and reason 

results indicated that providing explanations lead to better 

understanding and trust of the system with less 

 
Figure 4. Participants receiving explanations (in the Learning 

section) answered significantly more questions correctly in the 

Fill-in-the-Blanks section. 

 
Figure 5. Percent of reasons coded as Inequality, Partially 

Correct, or Fully Correct in the Reasoning Test section. 

0
25
50
75

100

None Why Not Why

% Correct Answers

0
25
50
75

100

None Why Not Why

% Responses with Correct Answer Reasons

Inequality
Partially Correct
Fully Correct



disagreement about the system output. However, in their 

provided why reasons, several participants alluded to the 

domain of physical activity and physiology to explain how 

the inputs (Body Temperature, Heart Rate, and Pace) 

should relate to whether the device wearer was 

“Exercising” (e.g., “moving & high [body temperature], 

looks like running so I upped the [heart rate]”). 

Furthermore, most responses specified the inputs as “high” 

or “low” rather than specifying numeric boundaries (e.g., 

“heart rate is low, so must be a high pace along with high 

body temperature to predict exercising”). This suggests that 

having prior knowledge would lessen participants‟ effort to 

be precise about their understanding. To mitigate the effects 

of prior knowledge, and to support more generalizability to 

other domains, we decided to anonymize the inputs and 

outputs with an abstract system. 

EXPERIMENT 2: INTELLIGIBILITY TYPE 

Our second experiment focused on comparing the 

effectiveness of different explanations types for each of the 

4 intelligibility questions. Using the algorithms described in 

Table 1, we isolate these explanations for each condition. 

Method 

This experiment followed the procedure of Experiment 1. 

For the None, Why, and Why Not conditions, participants 

see the same interface as in Experiment 1, but with the 

inputs obfuscated as A, B, and C, and the output values 

relabeled to a and b.  

Participants in the What If condition receive a What If 

interaction facility (see Figure 6) instead of an explanation 

to let them see the output given their choice of inputs. 

Participants in the How To condition received an interactive 

facility (see Figure 7) to determine how to get the system to 

produce a chosen output value. To control for the number 

of examples encountered, participants in the What If and 

How To conditions only get 12 complete examples (the 

even-numbered examples of other conditions), and can 

invoke their respective intelligibility facilities 12 times to 

see a total of 24 examples (similar to the other conditions). 

For each condition, the explanations or explanation 

facilities will always appear as each example is executed.  

Participants 

158 participants were recruited. There were 26-37 

participants in each of the 5 conditions: None (n=31); Why 

(n=30); Why Not (n=31); How To (n=29); What If (n=37). 

115 participants completed the demographics survey. 65 

were female, ages ranged from 18 to 72 (M=31.9), and 

education levels ranged from less than high school to post-

graduate degrees. On average, participants took 33 minutes 

to complete the study (similar to Experiment 1, they were 

required to complete the study within 15 to 50 minutes). 

Compensation was identical to Experiment 1. 

Results 

We analyzed the results by using the Tukey HSD pairwise 

test, looking for differences between groups for our 

previously described metrics. Compared to participants in 

the None, What If and How To conditions, participants in 

the Why and Why Not conditions had more correct answers 

in the Fill-in-the-Blanks tests (see Figure 8), provided 

better reasons (see Figures 9 and 10), and reported having a 

better understanding of the system (see Figure 11a).  

Participants in the Why and Why Not conditions had an 

accuracy of 80.0% and 74.2%, respectively, compared to 

61.7% for the None condition (F[1,152]=51.6, p<.001; see 

Figure 8).  More of their answer reasons were coded as at 

least Inequality type rules (Inequality: F[1,153]=198, 

p<.001), Partially Correct (F[1,153]=195, p<.001) and Fully 

Correct (F[1,153]=108, p<.001) (see Figure 9). Finally, the 

self-reports of understanding for Why and Why Not were 

3.14 and 2.79, respectively (see Figure 11a). 

Participants in the Why condition further distinguished 

themselves from Why Not by giving more Fully Correct 

reasons (contrast of Why with Why Not: F[1,153]=23.2, 

p<.001), and trusting the system output more (contrast of 

Why with None: F[1,153]=8.26, p<.001 vs. contrast of Why 

Not with None: p=n.s.) with means of 3.26, 3.0 and 2.46 for 

Why, Why Not and None, respectively (see Figure 11b). 

However, these participants also took the longest to answer 

each Fill-in-the-Blanks test case (M=26.3 seconds, 

compared to M=22.0 and M=17.0 for Why Not and None, 

respectively) (contrast of Why with None: F[1,145]=9.32, 

p<.003 vs. contrast of Why Not with None: p=n.s.). 

Surprisingly, participants in the Why Not condition were 

not statistically better at providing Why Not reasons than 

Why reasons. While participants in the What If condition 

were indistinguishable from those in the None condition 

across all of our metrics, we did find that participants in the 

How To condition were able to understand the types of 

 

Figure 6. Participants in the What If condition view this 

facility. They enter values for the inputs A, B, and C, and the 

system simulates what the output would be. 

 

Figure 7. Participants in the How To condition view this 

facility. They specify two of the input values and an output 

value, and the system responds with the possible values of the 

remaining input. 



 

rules used in the system better than participants in the None 

condition (answer reasons coded as Inequality or better: 

F[1,153]=15.6, p<.001). 

Surprisingly, participants in the Why Not condition were 

not statistically better at providing Why Not reasons than 

Why reasons. While participants in the What If condition 

were indistinguishable from those in the None condition 

across all of our metrics, we did find that participants in the 

How To condition were able to understand the types of 

rules used in the system better than participants in the None 

condition (answer reasons coded as Inequality or better: 

F[1,153]=15.6, p<.001). 

To identify why participants in the Why Not condition 

understood less about the rules than Why, we coded the 

quality of answer reasons on the number of inputs and rules 

mentioned. Participants in the Why condition provided 

more correct rules (M=1.19 vs. M=0.79; F[1,59]=6.16, 

p<.02) and fewer extraneous rules (M=0.11 vs. M=0.23; 

F[1,59]=8.276, p<.006) than Why Not.  

Discussion and Implications 

The results in Experiment 2 validate those in Experiment 1 

with a more generalized abstract domain, while not 

suffering from confounds due to prior domain knowledge. 

The Why and Why Not explanations improved participants‟ 

understanding, increased their trust in the system, and their 

task performance. Examining the user reasons, we found 

that automatically generated Why explanations allowed 

users to more precisely understand how the system 

functions for individual instances compared to Why Not 

explanations. This is in spite of the Why Not explanations 

being logically equivalent to Why explanations since 

flipping the not‟s in the former can derive the latter. 

Moreover, we found that the Why Not participants tended 

to provide fewer correct rules (more participants could only 

provide one correct rule instead of two) for the answer 

reason, or provide extraneous inputs and rules that the 

system did not consider for the respective test cases, as 

compared to the Why participants. These indicate that Why 

Not participants tended to learn only part of the reasoning 

trace, and did not associate the two rules together, but 

treated them separately. This failure in rule conjunction 

could be due to the inclusion of negative wording (i.e. “but” 

and “not”) in the Why Not explanation. The mental effort to 

understand the Why Not explanation and create such a rule 

conjunction is certainly more than those in the Why 

condition had to expend, which could explain the 

differences we observed. 

Neither the How To nor What If explanations showed much 

benefit over not having explanations. Participants receiving 

What If explanations did not optimize their selection of 

examples, with some users even selecting input values out 

of range (e.g., A=100). Given the abstract and mathematical 

nature of the experimental setup, without any reasoning 

trace (unlike Why, Why Not, How To), almost none of 

these participants proposed inequality rules as reasons, 

similar to those in the None condition. However, as with the 

effect of domain knowledge (in Experiment 1), participants 

who did not receive reasoning traces did consider the 

inequality rules, but just not correctly (see Figure 9). 

Our results suggest that developers should provide Why 

explanations as the primary form of explanation and Why 

Not as a secondary form, if provided. Our results may 

suggest the ineffectiveness of How To and What If 

explanations, but these intelligibility types may be more 

useful for other types of tasks, particularly those relating to 

figuring out how to execute certain system functionality, 

rather than interpreting or evaluating. 

GENERAL DISCUSSION 

We now discuss the findings of our two experiments and 

their implications for real world context-aware systems. 

 
Figure 8. Percent of correct answers in the Fill-in-the-Blanks 

test section, by condition. Different colors (left three vs. right 

two) indicate statistically significant differences. 

 
Figure 9. Percent of reasons coded as Inequality, Partially 

Correct, or Fully Correct in the Fill-in-the-Blanks Test section 

for each condition. 

 
Figure 10. Overall understanding of the system was similar to 

the understanding in-situ of individual examples, but 

responses were less precise (fewer correct descriptions).  

 

  
Figure 11. Self-reports of (a) understanding and (b) trust, by 

condition. Different colors indicate significant differences. 

 

 

0

25

50

75

100

None What If How To Why Not Why

% Correct Answers

0

25

50

75

100

None What If How To Why Not Why

% Responses with Correct Answer Reasons

Inequality

Partially Correct

Fully Correct

0

25

50

75

100

None What If How To Why Not Why

% Participants with Correct Mental Model 
Score

Inequality

Partially Correct

Fully Correct

0
1
2
3
4

None What If How To Why Not Why

Understood SystemFully Agree
Agree

Neutral
Disagree

Fully Disagree
(a)

0
1
2
3
4

None What If How To Why Not Why

Trust of System OutputFully Agree
Agree

Neutral
Disagree

Fully Disagree
(b)



Impact of Prior Knowledge 

We found in Experiment 1 that participants formed less 

accurate and precise mental models of the system, 

compared to those in Experiment 2. This could be due to 

participants applying their prior knowledge of exercising to 

understanding how the system works and not paying careful 

attention to the explanations, as evidenced by the reasons 

they provided. This persistence of mental model was also 

shown in [24] where participants received explanations, 

over time, of how an interruptibility system worked. As 

many real context-aware applications are based on common 

everyday activities, users may have strong prior knowledge 

of the domains although weak understanding of the 

applications, and may also not diligently learn from the 

provided explanations. One way to address this could be to 

learn from the knowledge-based systems community, and 

provide deeper justification [14] explanations to help users 

understand why the system behavior may be different from 

typical everyday understanding. To support users that may 

not have this prior knowledge, perhaps explanations that 

provide this knowledge can be used.  

From the Lab to the Real World 

Our intelligibility experiments form a necessary first step in 

exploring this rich area, but they differ from real 

applications in that users would have different goals when 

asking either of the intelligibility type questions. In reality, 

users would ask Why questions when they lack an 

understanding of how the application works, but Why Not 

questions when they expect certain results that the 

application did not produce. This distinction in user 

expectations and goals was not present in our lab study. 

Thus, even if Why Not explanations are found to be less 

effective than Why explanations for real systems, users may 

prefer Why Not explanations to bridge gaps in their 

understanding and improve trust and acceptance.  

In order to investigate how our findings can be applied in a 

real-world setting, we are currently developing a context-

aware extension for the AOL Instant Messenger (AIM) that 

uses predictions of buddy responsiveness to instant 

messages (based on [5]). In a forthcoming longitudinal 

deployment we plan to investigate how explanations affect 

usability and acceptability. 

Implications for Context-Aware Applications 

While our intelligibility test infrastructure has some 

characteristics of context-aware systems, real context-aware 

applications are more complex and several issues would 

have to be handled regarding the provision of intelligibility 

type explanations. Firstly, applications that use decision 

tree models tend to have much larger trees learned from 

possibly hundreds of features, and it would not be scalable 

to generate explanations from them. For example, a tree of 

depth 13 could lead to the Why traces that have over 10 

inequality relations. The explanations returned would be too 

long for users to assimilate and remember. One way to deal 

with the larger tree size is to just provide subsets of reasons 

in the explanations. For example, the Why trace could just 

provide the top 5 inequality relations ranked by how much 

each relation affects the prediction accuracy. Providing 

subsets of explanations would provide users with only 

partial understanding of each application behavior instance, 

and users may have to interact with the system longer 

before understanding the system better. One way to reduce 

overall learning time may be to start new users with higher-

detail explanations, then progress to less detail the more 

they interact with the system. 

While our setup dealt with decision tree learners, the Naïve 

Bayes classifier is another popular learner used in context-

aware applications. Even though they are not as intuitive as 

decision trees, Naïve Bayes models can be interpretable, 

and there are several visualizations to explain them (e.g., 

nomograms [7]). However, some learners (e.g., Support 

Vector Machines, Neural Networks) are considered black-

boxes and are not inherently interpretable. Fortunately, 

there have been some attempts to make them explainable 

using decision trees or rules (e.g., [3]). We can then use the 

same techniques to provide explanations for systems based 

on decision tree models. 

Another issue with real systems is that users may not like to 

receive explanations all the time, but on demand instead, 

because the former may be too obtrusive. We would like to 

run a future study to compare if users can still benefit 

sufficiently from explanations if they get to choose when 

and how often they can receive explanations, and if explicit 

effort in asking for explanations can improve learning. 

Our results suggest the effectiveness and importance of 

providing Why and Why Not explanations over How To 

and What If. The former two deal with Norman‟s gulf of 

evaluation, while the latter two deal with the gulf of 

execution [21]. While we feel that this dichotomy should 

remain true for informative context-aware systems (e.g., 

applications to determine interruptibility of others to inform 

onlookers [5, 24]), systems that are more pro-active (e.g., 

applications that send notifications based on the user‟s 

interruptibility) may benefit more with the How To and 

What If explanations. With those explanations, users would 

be better informed of how they can carry out their tasks. 

FUTURE WORK 

The design of the generalized web-based intelligibility 

system lends itself to be easily modified to investigate other 

factors for providing explanations.  We are interested in 

investigating the effects of varying the number of times 

participants receive explanations and whether the benefits 

would plateau or drop after a certain amount. For on 

demand invocations of explanations, we are interested in 

exploring how user behavior and perceptions change when 

varying the cost of asking for explanations, or the cost of 

the user making mistakes during task performance. Given 

that our results suggest that Why explanations are more 

effective than Why Not, we would like to investigate 

whether users would also prefer Why explanations over 

Why Not, in a within-subject study. Furthermore, though 

our results do not show the effectiveness of How To and 



 

What If explanations, we believe that tasks more oriented 

toward explicit user action may benefit more from these 

intelligibility types of explanations. We plan to run another 

study with tasks focusing on user action rather than 

understanding to explore the effects of these explanations. 

Visualizations are a popular medium to provide insight to 

data or how a system works, and are employed in 

knowledge-based systems. In particular, for decision trees, 

showing the tree and tracing the Why trace would provide a 

quickly interpretable overview of the 5 intelligibility 

questions: What the system did, Why it did it, Why Not do 

something else, How it could do something, and What it 

would do If an input condition changes. However, some 

technical knowledge is required to properly utilize the tree 

visualization. We would like to conduct a study exploring 

such a “Complete” explanation with subjects having 

variable technical knowledge. 

Finally, we plan to build a toolkit that will allow developers 

to easily make their intelligent context-aware applications 

intelligible (drawing on lessons from Situations [10], and 

PersonisAD [4]).  

CONCLUSIONS 

We have described a large controlled study comparing the 

provision of explanations addressing four intelligibility type 

questions (why, why not, how to, and what if). We 

developed a web-based infrastructure that provides a 

functional input-output interface of an intelligent system 

prototype that provides different types of explanations. Our 

findings suggest that providing reasoning trace explanations 

for context-aware applications to novice users, and in 

particular Why explanations, can improve user‟s 

understanding and trust in the system. This work is a 

necessary first step into understanding the impact of 

explanations in context-aware applications. 

ACKNOWLEDGEMENTS 

We also thank Niki Kittur, Noboru Matsuda, Vincent 

Aleven, Sara Kiesler, and Andy Ko for their insight and 

feedback. This work was funded in part by the National 

Science Foundation under grant 0746428. 

REFERENCES 
1. Amazon Mechanical Turk. http://www.mturk.com. Retrieved 

16 Sep 2008. 

2. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, 

R. (1995). Cognitive Tutors: Lessons Learned. Journal of the 

Learning Sciences, 4(2), 167-207. 

3. Andrews, R., Diederich, J. & Tickle, A. (1995). A Survey and 

Critique of Techniques for Extracting Rules from Trained 

Artificial Neural Networks.  Knowledge Based Systems. 8: 

373–389. 

4. Assad, M., Carmichael, D.J., Kay, J. & Kummerfeld, B.  

(2007). PersonisAD: Distributed, Active, Scrutable Model 

Framework for Context-Aware Services. Pervasive 2007, 55-

72. 

5. Avrahami, D. and Hudson, S.E. (2006). Responsiveness in 

Instant Messaging: Predictive Models Supporting Inter-

Personal Communication. CHI'06, 731-740. 

6. Bellotti, V. & Edwards, W.K. (2001). Intelligibility and 

Accountability:   Human   Considerations   in   Context-Aware 

Systems, Human-Computer Interaction, 16(2-4): 193-212.  

7. Bellotti, V., Back, M., Edwards, W.K., Grinter, R.E., 

Henderson, A. & Lopes, C. (2002). Making sense of sensing: 

Five questions for designers and researchers. CHI’02, 415-

422. 
8. Cheverst, K., Byun, H.E., Fitton, D., Sas, C., Kray, C. and 

Villar, N. (2005). Exploring issues of user model transparency 

and proactive behavior in an office environment control 

system. User Modeling and User-Adapted Interaction: 

Journal of Personalization Research, 15(3-4), 235-273. 

9. Davis, R., Buchanan, B., and Shortliffe, E. (1977). Production 

rules as a representation for a knowledge-based consultation 

program. Artificial Intelligence, 8(1): 15–45. 

10. Dey, A.K. & Newberger, A. (2009). Support for contxt-aware 

intelligibility and control. To appear in CHI’09. 

11. Dourish, P., Adler, A. & Smith, B.C. (1996). Organising User 

Interfaces Around Reflective Accounts. Reflection'96, 235-

244. 

12. Dzindolet, M., Peterson, S., Pomranky, S. Pierce, L. & Beck, 

H. (2003). The role of trust in automation reliance, Int’l 

Journal of Human-Computer Studies, 58(6): 697-718. 

13. Google Web Toolkit. http://code.google.com/webtoolkit/. 

Retrieved 16 Sep 2008. 

14. Gregor, S. & Benbasat, I. (1999). Explanations From 

Intelligent Systems: Theoretical Foundations and Implications 

for Practice. MIS Quarterly 23(4): 497–530. 

15. Herlocker, J., Konstan, J. & Riedl, J. (2000). Explaining 

collaborative filtering recommendations. CSCW 2000, 241-

250. 

16. Ko, A.J. & Myers, B.A. (2004). Designing the WhyLine: A 

debugging interface for asking questions about programm 

failures. CHI 2004, 151-158. 

17. Mozina M., Demsar, J., Kattan, M., & Zupan, B. (2004). 

Nomograms for Visualization of  Naive Bayesian Classifier. 

PKDD 2004, 337-348. 

18. McGuinness, D.L., Glass, A., Wolverton, M. & Pinheiro da 

Silva, P. (2007). A Categorization of Explanation Questions 

for Task Processing Systems. AAAI Workshop on Explanation-

Aware Computing.  

19. Muir, B. (1994). Trust in automation: Part i. theoretical issues 

in the study of trust and human intervention in automated 

systems. Ergonomics, 37(11): 1905–1922. 

20. Myers, B.A., Weitzman, D., Ko, A.J. & Chau, D.H. (2006). 

Answering Why and Why Not Questions in User Interfaces.  

CHI 2006, 397-406.  

21. Norman, Donald A. (1988). The Design of Everyday 

Things. New York, Doubleday.  

22. Nugent, C., & Cunningham, P. (2005). A case-based 

explanation system for black-box systems. Artificial 

Intelligence Review, 24(2): 163–178. 

23. Schilit, B.N., Adams, N.I. & Want, R. (1994). Context-aware 

computing applications. 1st International Workshop on Mobile 

Computing Systems and Applications, 85–90.  

24. Tullio, J., Dey, A.K., Fogarty, J. & Chalecki, J. (2007). How it 

works: A field study of non-technical users interacting with an 

intelligent system. CHI 2007, 31-40. 

25. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. 

Morgan Kaufmann Publishers. 

26. Weiser, M. (1991). The computer for the 21st century. 

Scientific American, 265(3): 94-104. 

27. Weiser, M. & Brown, J.S., (1995). Designing Calm 

Technology. PowerGrid Journal v1.01. 


