

Improving Understanding and Trust
with Intelligibility

in Context-Aware Applications

Brian Y. Lim

May 2012
CMU-HCII-12-104

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Anind K. Dey (Chair), Carnegie Mellon University

Scott E. Hudson, Carnegie Mellon University
Aniket Kittur, Carnegie Mellon University

Margaret M. Burnett, Oregon State University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright © 2012 Brian Y. Lim. All rights reserved.

This work was supported by the National Science Foundation under grant 0746428 and the author's
National Science Scholarship (PhD) from the Agency for Science Technology And Research,

Singapore. Any opinions, findings, conclusions, or recommendations expressed in this material are
those of the author and do not necessarily reflect those of the funding agencies.

II

Keywords: intelligibility, explanations, context-awareness, ubiquitous computing (ubicomp),

human-computer interaction.

III

ABSTRACT

To facilitate everyday activities, context-aware applications use sensors to detect what is happening

and use increasingly complex mechanisms (e.g., by using big rule-sets or machine learning) to infer

the user's context and intent. For example, a mobile application can recognize that the user is in a

conversation and suppress any incoming calls. When the application works well, this implicit

sensing and complex inference remain invisible. However, when it behaves inappropriately or

unexpectedly, users may not understand its behavior. This can lead users to mistrust, misuse, or

even abandon it. To counter this lack of understanding and loss of trust, context-aware applications

should be intelligible, capable of explaining their behavior.

We investigate providing intelligibility in context-aware applications and evaluate its usefulness to

improve user understanding and trust in context-aware applications. Specifically, this thesis

supports intelligibility in context-aware applications through the provision of explanations that

answer different question types, such as: Why did it do X? Why did it not do Y? What if I did W,

What will it do? How can I get the application to do Y?

This thesis takes a three-pronged approach to investigating intelligibility by (i) eliciting the user

requirements for intelligibility, to identify what explanation types end-users are interested in

asking context-aware applications, (ii) supporting the development of intelligible context-aware

applications with a software toolkit and the design of these applications with design and usability

recommendations, and (iii) evaluating the impact of intelligibility on user understanding and trust

under various situations and application reliability, and measuring how users use an interactive

intelligible prototype. We show that users are willing to use well-designed intelligibility features,

and this can improve user understanding and trust in the adaptive behavior of context-aware

applications.

V

ACKNOWLEDGEMENTS

I would like to thank my advisor Anind Dey for his time, support, wisdom, and guidance. His

patience has allowed me to pursue my research interests and his comments have helped to me seek

the big picture in my research and identify implications for my findings. Likewise, I thank my thesis

committee members — Scott Hudson, Niki Kittur, and Margaret Burnett — to guide my research

and strengthen its technical contributions and experimental rigor.

Though the pursuit of a PhD may feel lonely at times, I am fortunate to have many friends and

colleagues supporting me, and keeping me company along the way.

To my office buddies of four years — Tawanna Dillahunt and Min Kyung Lee — for the fond

memories and much commemoration and commiseration of our research and PhD lives, thank you.

To my academic brother, Matthew Lee, for your listening ear and warm friendship, thank you.

To many students, faculty, and staff at CMU, the HCII and the Ubicomp Lab for your invaluable

discussions, time, feedback expertise, and help — Vincent Aleven, Daniel Avrahami, Maria Brooks,

Kerry Chang, Laura Dabbish, Scott Davidoff, Christian Köhler, Chloe Fan, Denzil Ferreira, Charles

Gouin-Vallerand, Chris Harrison, Eiji Hayashi, Jin-Hyuk Hong, Gary Hsieh, Kevin Huang, Ruogu

Kang, Sara Kiesler, SeungJun Kim, Sunyoung Kim, Rebecca King, Queenie Kravitz, Andy Ko, Bertha

Lam, Ian Li, Somchaya Liemchetcharat, Bryan Low, Jen Mankoff, Gabriala Marcu, Noboru Matsuda,

Andreas Möller, Stephen Oney, Bryan Pendleton, Stephanie Rosenthal, Carolyn Rosé, John Santerre,

Aubrey Schick, Julia Schwarz, Choonsung Shin, Jessica Stanley, Kanupriya Tavri, Leonghwee Teo,

Karen Tang, Eran Toch, Dezhong Yao, Zhiquan Yeo, Haiyi Zhu, Brian Ziebart — thank you.

To my friends from PCCO OIF and the Abundant Life group for welcoming me into their community

and forging meaningful relationships, thank you.

To my parents for your immeasurable sacrifices and selfless love, for nurturing me in my formative

years, and your continued support, thank you.

To my love, Huilin, for your many jia you’s to encourage me, nudging me through my work, and

supporting me through many moments. Thank you for always being here for me.

VII

TABLE OF CONTENTS

Abstract .. iii

Acknowledgements .. v

Table of Contents .. vii

Figures .. xiii

Tables .. xix

1 Introduction .. 1

1.1 The Problem ― Lack of Intelligibility ... 2

1.2 A Solution ― Explanations for Intelligibility ... 3

1.3 Scope and Definitions ... 6

1.4 Contributions ... 8

1.5 Outline ... 8

2 Related Work: Explanations in Intelligent Systems 11

2.1 Explanations in Expert Systems ... 11

2.2 Explanations in End-User Systems .. 18

2.3 Summary .. 28

3 Explanation Types for Intelligibility .. 29

3.1 Research Questions for Intelligibility ... 30

3.2 Taxonomy of Intelligibility Explanation Types .. 35

4 Investigating the Intelligibility of Question Types 41

4.1 Introduction .. 42

4.2 Intelligibility ... 42

VIII TABLE OF CONTENTS

4.3 Intelligibility testing Platform ... 45

4.4 Method .. 48

4.5 Experiment 1 .. 52

4.6 Experiment 2 .. 55

4.7 General Discussion ... 60

4.8 Conclusions and Further Work ... 62

5 Assessing Demand for Intelligibility .. 65

5.1 Introduction .. 65

5.2 Hypotheses and Approach .. 67

5.3 Setup: Scenarios of Four Context-Aware Applications ... 67

5.4 Experiment 1: Assessing Demand for Information Types ... 71

5.5 Experiment 2: Assessing Demand for Explanation Types ... 79

5.6 Discussion .. 84

5.7 Design Recommendations .. 86

5.8 Limitations .. 92

5.9 Conclusions and Further Work ... 92

6 Intelligibility Toolkit ... 95

6.1 Introduction .. 95

6.2 Inference Models in Context-Aware Applications .. 97

6.3 Explanation Question Types ... 101

6.4 Explanation Styles of Model-Based Explanations .. 104

6.5 Requirements .. 104

6.6 Toolkit Architecture ... 106

6.7 Implementation of the Intelligibility Toolkit ... 110

6.8 Explanation Expression .. 113

6.9 Query .. 116

TABLE OF CONTENTS IX

6.10 Explainer Algorithms ... 117

6.11 Reducer .. 133

6.12 Presenter ... 137

6.13 Querier ... 138

6.14 Selector .. 139

6.15 Validation: Demonstration Applications ... 142

6.16 Limitations and Discussions ... 149

6.17 Related Work in Explaining Context .. 150

6.18 Conclusion and Future Work .. 151

7 Designing for Intelligibility .. 153

7.1 Introduction ... 153

7.2 Laκsa ― Social Awareness Application ... 154

7.3 Design of Intelligibility .. 157

7.4 Laκsa Prototype Implementation ... 161

7.5 Laκsa Prototype Usage .. 161

7.6 Scenario-Driven Think Aloud User Study .. 163

7.7 Data Analysis ... 165

7.8 Findings ― Patterns of Intelligibility Use .. 166

7.9 Discussion ― Themes Of Intelligibility Use ... 171

7.10 Design Recommendations For Intelligibility ... 174

7.11 Limitations and Further Work ... 176

7.12 Conclusion .. 177

8 Evaluating Intelligibility Under Uncertainty .. 179

8.1 Introduction ... 179

8.2 Intelligibility And Uncertainty ... 180

8.3 Hypotheses ... 182

X TABLE OF CONTENTS

8.4 Method ... 183

8.5 Application Platforms .. 184

8.6 Scenarios ... 185

8.7 Procedure ... 188

8.8 Participants and Data Cleansing .. 189

8.9 Data Analysis and Results .. 189

8.10 Follow-Up: Think-Aloud Study .. 197

8.11 Discussion ... 198

8.12 Design Recommendations ... 202

8.13 Conclusion and Future Work .. 203

9 Evaluating the Usage and Usefulness of Intelligibility 205

9.1 Introduction ... 205

9.2 Objectives and Approach .. 207

9.3 Laκsa2 Prototype ... 207

9.4 Scenario-Driven Quasi-Field Study .. 212

9.5 Measures and Data Preparation .. 215

9.6 Results .. 219

9.7 Discussion, Implications, and Recommendations .. 227

9.8 Limitations and Further Work ... 231

9.9 Conclusions .. 233

10 Discussion & Conclusion .. 235

10.1 Summary of Contributions .. 235

10.2 Limitations ... 238

10.3 Additional Research Opportunities ... 238

Bibliography ... 243

TABLE OF CONTENTS XI

A Intelligibility Toolkit Software .. 267

B Intelligibility Toolkit Explainers .. 269

B.1 Abstract Base Explainer .. 269

B.2 Enactor Base Explainer ... 270

B.3 Weka Base Explainer.. 273

B.4 Rule Trace Explainer .. 274

B.5 Disjunctive Normal Form (DNF) Explainer .. 278

B.6 Separable-Rules DNF Explainer .. 282

B.7 Enactor Rules Explainer ... 285

B.8 Other System Rules Explainers .. 285

B.9 Decision Tree Rule Trace Explainer... 285

B.10 Other Rules Explainers .. 287

B.11 Weights of Evidence Explainer .. 287

B.12 Linear Regression Explainer ... 294

B.13 Logistic Regression Explainer .. 296

B.14 Linear Support Vector Machine (SVM) Explainer .. 300

B.15 Naïve Bayes Explainer ... 307

B.16 Hidden Markov Models (HMM) Explainer .. 308

B.17 Decision Stump Explainer .. 311

B.18 Decision Tree Evidence Explainer .. 312

B.19 k-Nearest Neighbors (kNN) Explainer .. 317

B.20 Ensemble Classifier Explainers .. 322

B.21 Boostrap Aggregation (Bagging) Explainer .. 328

B.22 AdaBoost.M1 Explainer ... 330

B.23 Ensemble Decision Trees Rule Traces Explainer ... 334

B.24 Summary of Explainers for Inference Models ... 336

XII TABLE OF CONTENTS

C Hello World Tutorial for Intelligibility Toolkit 341

D Laκsa Inference Models ... 347

D.1 Availability ... 347

D.2 Place .. 347

D.3 Sound Activity ... 349

D.4 Motion Activity ... 358

E Laκsa Experiment Materials .. 365

E.1 Participant Reference Sheet .. 365

F Uncertainty Study Materials .. 367

F.1 Scenarios ... 368

F.2 Scenario Scripts .. 370

F.3 Survey Instrument .. 386

G Laκsa User Interface ... 419

G.1 Intelligibility User Interface .. 420

H Laκsa2 User Interface ... 423

H.1 Intelligibility User Interface .. 424

H.2 Control User Interfaces ... 429

H.3 Actions User Interface ... 430

H.4 Laκsa Intelligibility Graph .. 431

I Laκsa2 Study Materials .. 433

I.1 Instructions ... 433

I.2 Scenarios .. 439

I.3 Survey Instrument.. 443

J Laκsa2 Usage Details .. 445

J.1 Participant Sequence Models ... 445

XIII

FIGURES

Figure 1.1. Three-stage approach to thesis with various projects connected by progression. Arrows

indicate how findings and implications from one study applies to the next. We

summarize our taxonomy for Intelligibility in Chapter 3. .. 4

Figure 4.1. Screenshot of the interface for our intelligibility testing infrastructure. 46

Figure 4.2. Visualization of the learned decision tree model used in Experiment 1. 47

Figure 4.3. Participants receiving explanations (in the Learning section) answered significantly

more questions correctly in the Fill-in-the-Blanks section. ... 54

Figure 4.4. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the

Reasoning Test section. ... 54

Figure 4.5. What If explanation facility. Participants would get to freely enter values for the inputs

A, B, and C, and get the system to simulate what the output would be..................................... 55

Figure 4.6. Participants in the How To condition view this facility. By specifying two of the input

values and an output value, they can inquire the system to indicate possible values of the

remaining input. ... 56

Figure 4.7. Percent of correct answers in the Fill-in-the-Blanks test section, by condition. Different

colors indicate statistically significant differences. .. 58

Figure 4.8. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the Fill-in-

the-Blanks Test section for each condition. .. 58

Figure 4.9. Overall understanding of the system was similar to the understanding in-situ of

individual examples, but responses were less precise (fewer correct descriptions). 58

Figure 4.10. Self-reports of (a) understanding and (b) trust, by condition. Different colors indicate

significant differences. .. 59

Figure 5.1: (Left) Screen capture of a five-second video clip for the IM Auto-Notification application

survey, showing the user rushing to meet a deadline. (Right) Screenshot of a non-work

IM message that had been suppressed, and delivered later. ... 68

XIV FIGURES

Figure 5.2: (Left) Screen capture of a five-second video clip for the Elderly Remote Monitoring

application survey, showing the user casually glancing at the display. Screenshots of a

normal event (Middle), and an anomalous event (Right)... 69

Figure 5.3: (Left) Screen capture of a five-second video clip for the Reminder application survey,

showing the phone triggering at the pantry. Screenshots of a work-related reminder

(Middle), and personal reminder (Right). ... 70

Figure 5.4: (Left) Screen capture of a five-second video clip for the Tour Guide Recommender

application survey, showing the user walking by the museum, a point of interest. (Right)

Animated screenshots recommending a dinosaur exhibit at the museum. 71

Figure 5.5: Hierarchical representation of explanation types that users want to know. 73

Figure 6.1: (Left) Counts of model types used in 109 of 114 reviewed context-aware applications

from 2003-2009. (Right) Counts for 50 recognition applications; classifiers are used

most often for applications that do recognition. .. 97

Figure 6.2: Architecture of the Intelligibility Toolkit showing functional and structural components.

 .. 106

Figure 6.3: Architecture of Enactor framework of the Context Toolkit updated to include output

values and In and Out Widgets. .. 111

Figure 6.4: Architecture of Enactor framework updated to support classifiers. Only one Reference is

used for the classifier; in contrast, for rules one Reference is needed per rule. 113

Figure 6.5: Architecture of components of the Intelligibility Toolkit integrated into the Enactor

framework for a typical context-aware application built with the Context Toolkit. 117

Figure 6.6: Diagram representation of extracting Why explanation(s) and extracting Why Not

explanations from a system of DNF trees. (Left) Explains why th class was inferred,

selecting conjunction traces that are satisfied by the current input values. (Middle)

Negating the DNF tree for rules inferring the th class produces a tree in conjunctive

normal form (CNF) after applying De Morgan’s Laws. Note that condition literals are

negated. All disjunction traces in the CNF negated tree are satisfied, highlighting specific

negated condition literals that are satisfied by the current input values. (Right) Explains

how to infer the th class by returning the full DNF tree that can infer that class. 119

FIGURES XV

Figure 6.7: Conversion of a set of rule tree expressions into separate trees in disjunctive normal

form (DNF) to generate explanations from Rules. .. 122

Figure 6.8: Conversion of a decision tree into separate trees in disjunctive normal form (DNF) to

generate explanations from Decision Trees. ... 123

Figure 6.9: Automatic Room Lighting application demonstrating explanations of a rule-based

application. .. 143

Figure 6.10: IM Autostatus demonstrating explanations from an instant messaging plug-in that uses

a decision tree to predict when a buddy may respond. .. 144

Figure 6.11: Motion Recognizer demonstrating a weights of evidence explanation for a mobile

phone application inferring the physical activity of the user. ... 146

Figure 6.12: Two Why visualizations for explaining a HMM to infer domestic activity. 148

Figure 7.1. Laκsa context architecture with different tiers of context used to infer higher-level tiers.

The user sees the Availability status, and the intelligibility explanations. 155

Figure 7.2. Screenshot of the Laκsa showing how to use the components in the core and

intelligibility user interface. ... 158

Figure 7.3. Explanation Visualizations rendered in the explanation panel. Some examples and their

interpretations. The UI uses icons derived from [Fatcow]. .. 159

Figure 7.4. Consolidated sequence models of explanation use for Fault Finding. Steps were

abstracted from individual actions that participants took across scenarios S3, S4, and S6.

 .. 168

Figure 7.5: Blame shifting during S4 about mistakenly receiving a phone call in the library. 173

Figure 7.6. Simple "bubble" components simultaneously for explaining seven questions about Place.

 .. 175

Figure 7.7. Streamlined sequence diagram for explanation use. .. 176

Figure 8.1. Hypothesis 1: Intelligibility will improve user impressions when an application is certain

of its actions, but it will harm impressions when it is uncertain. Only interaction effect

suggested, not linearity of trends. ... 182

Figure 8.2. Mean of number of correct and wrong reasons counted from participant free-text

responses of how the application made its inference in S6. Participants with Full

XVI FIGURES

intelligibility gave more correct reasons when explaining about HearMe than those with

None (p<.01); this was only marginal for participants explaining LocateMe (p=.08).

Furthermore, participants explaining LocateMe offered more wrong reasons than those

explaining HearMe (p<.01), particularly when provided with some form of intelligibility

(p<.01). ... 190

Figure 8.3. Mean number of correct Input factors in the top three choices of the Inputs ranking task

(Left), and number of fallacious factors given in all 10 choices (Right). Participants with

Full intelligibility chose more correct factors of HearMe as top three than those with

None (p=.014); this was not noticeable for LocateMe (p=n.s.). Moreover, participants

explaining HearMe chose fewer fallacious factors than those explaining LocateMe,

particularly when provided with Full intelligibility (p<.01). ... 190

Figure 8.4. Perception of Overall Certainty: combined analysis (Left), and for individual applications

(Middle and Right). Participants with Full intelligibility perceived a higher certainty

when the application had high actual certainty, but perceived a lower certainty when it

had low actual certainty. ... 192

Figure 8.5. Perceived certainty influenced by application appropriateness across scenarios. The

application behaved appropriately for at least one Certainty condition in S1, S4, S6, S8,

and S10, more so for lower certainty conditions. ... 194

Figure 8.6. Perceived certainty across actual certainty by application appropriateness. Note: no

inappropriate scenarios for 100% certainty condition. ... 194

Figure 8.7. Agreement across Perceived Appropriateness, grouped by actual certainty. The effect of

finding 4h is only significant for low actual certainty. .. 196

Figure 9.1. Screenshots of Laκsa 2 showing several explanation types of the upper-tier context

Availability, and lower-tier contexts Sound and Place. Arrows show how a user can

transition from one explanation to another. The bold trace indicates how a participant

may explore the intelligibility features in nine steps to troubleshoot Scenario 3 about the

phone ringing in the Library. See Section 7.3 for a description of some of the UI design.

 .. 211

Figure 9.2. Perceived Application Behavior Appropriateness (Left) and perceived Explanation

Usefulness (Right) across scenarios. We include S1 in the graph for comparison, but not

in our analysis. Error bars indicate standard errors. .. 220

FIGURES XVII

Figure 9.3. Participants had a higher Understanding Score when they viewed ≥30 explanations than

fewer (p<.05, Left), and when they viewed explanations of Deeper contexts ≥2 times

more than Shallower ones (p<.05, Right). .. 225

Figure 9.4. (Left) Control Score is higher when participants ask more explanations about Deeper

contexts (Place and Sound) than Availability. (Right) Participants who owned smart

phones also had higher Control scores. Control scores were not influenced by View

Count. ... 225

Figure 9.5. Distribution of belief types of Understanding overall, and by Context Ratio; normalized

per scenario. Similar distribution for low View Count (<30) vs. high. 226

Figure 9.6. Distribution of effective suggestions participants made to improve Laκsa's behavior;

normalized for each scenario. (-) denotes partially effective suggestions with side-effects.

Note this is not the weighted Control Score. ... 226

Figure 9.7. Model of influence indicating how the usage of Intelligibility may influence a user’s

ability to Control, sense of Trust, and usage of the context-aware application. Lines in

grey were not explicitly explored in this study. ... 231

Figure B.1: Diagram representation of the Explanation Data Structure in Disjunctive Normal Form

(DNF). Each circular node represents a condition literal, each vertical column represents

a conjunction of literals, and these are joined horizontally as a disjunction. 275

Figure B.2. Recursive algorithm to convert an arbitrary Boolean expression to NNF. 277

Figure B.3. Recursive algorithm to convert a Boolean expression in NNF to DNF. 277

Figure B.4. (Left) A simple decision tree illustrating the condition literal of each edge and the class

value that will be inferred at each leaf. (Right) DNF trees for each class value that is built

after traversing the tree and collecting traces with the same inferred class value at their

leaves. Although this diagram illustrates the conversion for a binary decision tree, the

conversion is applicable to trees with more than two branches at each node. 286

Figure B.5. Algorithm to traverse the decision tree depth-first to convert it into DNF. 286

Figure B.6. Algorithm to obtain the condition literal representing an edge transition in the decision

tree. This is specifically implemented for J48 in Weka, but can be generally applicable for

other decision tree implementations. .. 287

XVIII FIGURES

Figure B.7. (Left) A decision tree illustrating probabilities at each node due to the probability

distribution in the training set satisfying the feature conditions, , at the node, and

conditional probabilities of each edge between nodes. (Right) Probabilities of nodes and

edges of the reasoning trace, assuming conditional independence between feature

conditions. Edge probabilities are used in the weights of evidence explanation. 312

Figure B.8. Modified algorithm (of Figure B.5) to traverse the decision tree depth-first to convert it

into DNF and store class probability distributions of edge conditions. 315

Figure B.9. Algorithm that implements Equation (B.105) to calculate the class probability

probability at each edge transition in the decision tree. .. 315

Figure C.1. Screenshots of the Hello Room application showing some explanations. 341

Figure D.1. Bubbles model used in Laκsa of the sensed user location and three semantic places A, B,

and C. This indicates that the user is inferred at A because of the overlap. 348

Figure D.2. Bubbles model used in Laκsa2 of the sensed user location and three semantic places A,

B, and C. The user location is modeled as a Gaussian area from the location coordinates.

Concentric circles indicate location accuracy bounds for: 15%, 50%, 95%, 99.9% CEP.

This indicates that the user is inferred at A (most likely) followed by B, because of the

relative amounts of overlapping areas. ... 348

Figure D.3. Sampling of audio signal partitioned into Windows and Time Frames. 349

Figure D.4. Triangular overlapping filters applied to the frequency spectrum: symmetric in the Mel

Frequency domain (Left) and distorted in the Frequency domain (Right).......................... 355

Figure D.5. Sampling of an accelerometer signal partitioned into a Window for sampling. 358

XIX

TABLES

Table 3.1. Dynamic instance-based explanation types explaining the inference of a specific event.

These explanations will differ for every instance the application acts. 36

Table 3.2. Dynamic general explanation types explaining the inference model of the context-aware

application. ... 37

Table 3.3. Static general explanation types explaining the inference model of the context-aware

application. For a static (fixed) model, these explanations will always be the same. 38

Table 4.1. Summary of hypotheses and results regarding the effect of explanation type on user

experience (understanding and trust). ‘≈’ means no significant difference (p=n.s.); ‘≤’

means we hypothesize either a lower user experience or no difference. 44

Table 4.2. Algorithms for generating different types of intelligibility explanations from a decision

tree model... 48

Table 4.3. Grading rubric for coding free-form reasons given by participants. Mental Models were

coded using this same rubric. ... 51

Table 4.4. Likert-scale questions of perception grouped into six factors with Cronbach’s α reliability

computed. The former three factors are regarding the system, and the latter three factors

only apply to participants who viewed Intelligible versions of the system. 52

Table 5.1: Questions posed to participants for each application response scenario to find out what

they think the application response, what they think is happening, and their information

demand for each scenario. ... 72

Table 5.2: Coding scheme for Experiment 1. The first two themes indicate participants’ thoughts on

the scenario, and the remaining themes indicate their information needs. Most of the

participant text responses were coded by one coder, with a 10% random sample of

responses coded by a second coder. Inter-coder reliabilities (κ) for each theme are

indicated. ... 74

Table 5.3: Results of Experiment 1. The left column shows the percentage of participants who had a

demand for various explanation types. The right columns show the effect size of whether

XX TABLES

higher moderator rating values (of each column) leads to increased (up arrows) or

decreased demand. All results indicate Bonferroni-corrected (n=78) significant

differences (p<.01; * denotes p<.05). Cohen’s d is reported to determine the size of

differences rather than just whether the differences are significant. Single arrow

indicates small effect size (), double arrows indicates medium effect size

(). .. 78

Table 5.4: Sample questions and explanations of various explanation types participants received for

the Digital Family Portrait. .. 80

Table 5.5: Results of Experiment 2 and Experiment 1. eiD: elicited information demand. siD:

solicited information demand. ∆aS: difference in application satisfaction for providing

explanation type. iuR: intelligibility usefulness rating of explanation received. For

Experiment 2, left columns under Average are the mean values of the Likert scale for siD

and iuR, and ∆aS, the difference in means between intelligibility-provided (various

types) and non-intelligible. The right columns are differences in means or differences

between high and low moderator rating groups. All Experiment 2 results of each

measure are Bonferroni corrected (n=84) and significant (p<.01, * denotes p<.05). 82

Table 5.6: Design prescription of which explanation types to implement depending on the

circumstances encountered by and functionality of the candidate context-aware

application. ... 90

Table 5.7: Reference of provision types to handle tradeoffs between providing intelligibility and

other issues. ... 90

Table 5.8: Circumstances mapping for UbiGreen. .. 91

Table 5.9: Issues mapping for UbiGreen. ... 91

Table 5.10: Design prescription for UbiGreen. .. 91

Table 6.1. Summary of currently supported question types grouped by the Query class that

supports them. ... 116

Table 6.2. Pedagogical example of input conditionals and output values for rule and decision tree.

This describes an application to infer a user's availability based on his Location, Sound

activity around him, the Time of the day, his Schedule, and who is Contacting him........ 122

TABLES XXI

Table 6.3. Summary of inference models supported by the Intelligibility Toolkit grouped by style of

explanation each explainer generates. * The toolkit provides Rule Trace and Weights of

Evidence explainers for decision trees, e.g., J48 has J48RuleTraceExplainer and

J48EvidenceExplainer. ... 132

Table 6.4. Summary of explanation types grouped by dependency. Toolkit programmers only need

to implement Model and Application-dependent explanation types. 132

Table 7.1. Explanation Visualization Types for each context, and question type. Only the What value

is shown for Ringer, Schedule, and Contactor. Note that Certainty is shown together with

both What .. 162

Table 7.2. Personal availability rules participants were told were pre-programmed into Laκsa for

the user study scenarios. ... 164

Table 7.3. Participant results in scenarios showing how each participant performed for each

scenario as he or she used explanations provided in Laκsa. Note that columns are

arranged in categories, not by sequence of presentation. ... 166

Table 8.1. Scenario scripts, application interfaces showing Full intelligibility, and their

interpretation of Scenario 6. .. 187

Table 8.2. Explanation types. LocateMe uses a map and bubbles visualization for its explanations

about its location inference. HearMe uses lists the current values of its sensed factors,

and their corresponding evidence to explain its sound activity inference. 188

Table 8.3. Pre-hoc contrast between Intelligibility types for low and high actual certainty. These

groups were chosen after visually inspecting the interaction graphs.................................... 192

Table 8.4. Means testing of whether perceptions of overall certainty are different from actual

certainties. t-test p-values suggest copying if p=n.s. ... 192

Table 8.5. Contrast between Intelligibility types for low and high actual certainty grouped by

application behavior. .. 195

Table 8.6. Contrast between Intelligibility types for low and high appropriateness grouped by actual

certainty. .. 196

Table 8.7. Distribution of participants in think-aloud study. Each participant saw S6 (appropriate

behavior) and S9 (inappropriate), iterated within-subjects with intelligibility types in the

order: None, Certainty, Full. ... 198

XXII TABLES

Table 8.8. Impact of Intelligibility on user impressions of a context-aware application depends on

application certainty and whether it behaved appropriately. ... 200

Table 8.9. Summary design recommendations of when and how to provide intelligibility given the

uncertainty in a context-aware application. ... 202

Table 9.1: Coding scheme for user understanding. Participants' mental models were decomposed

into beliefs based on what they explicitly said and tacitly implied. Each scenario may

have multiple codes, each either 0 or 1 indicating whether the correct corresponding

beliefs were expressed. We only coded for Place and Sound factors, since participants’

understanding of Availability can be derived from their understanding of these. Inter-

coder reliabilities (κ) for each code were calculated with a 35% random sample of the

scenarios by a second coder. * denotes apparent low reliability due to low count. 217

Table 9.2: Coding scheme for control suggestions. Participants' suggestions to improve Laκsa for

each scenario were coded with values: 0=Ineffective, 0.5=Partially effective, 1=Effective.

Each code may be counted multiple times depending on how many suggestions were

made. Inter-coder reliabilities (κ) were calculated with a 50% random sample by a

second coder. .. 218

Table 9.3. Summary statistics of intelligibility usage by participant scenario. ... 221

Table 9.4. Usage of explanation types: total view count of explanation types for all participant

scenarios, and median durations for respective views (for Total View Count > 15). Mean

View Count per scenario can be calculated by dividing by number of participant

scenarios, N=57. Colors show a heat map of values and relate to the numerical value. . 222

Table 9.5. Correlations between usage of, and impact due to intelligibility. Significant correlations

underlined (single: p<.05, double: p<.01). Superscript letters refer to interpretations in

text passage. .. 223

Table 9.6. Linear regression models with R2 values showing which factors better explain Control

Scores. ... 225

Table D.1. Sampling characteristics from the audio signal. .. 350

Table D.2. Summary of input features for Sound inference with simplified names, transformations,

and units used in explanations to end-users. W Low-energy frame rate is a window

feature where we only measure counts; all other features are time frame features where

we measure both Means and Standard Deviations across time frames within the window.

TABLES XXIII

P Spectral Centroid, Bandwidth, and Spectral Rolloff were aggregated in Laκsa with the

pan-flute visualization (see Figure 7.3c), but were separated for Laκsa2. 356

Table D.3. Summary of input features for Sound inference and expected values for different class

values (Speech, Music, and Ambient Noise). ... 357

Table D.4. Sampling characteristics from each accelerometer signal. .. 359

Table D.5. Summary of input features in Laκsa2 for Motion inference with simplified names,

transformations, and units used in explanations to end-users. .. 363

1

1 INTRODUCTION

Over the past 20 years, with the miniaturization and commoditization of computing power, we have

moved away from the desktop paradigm of computing to that of ubiquitous computing (Ubicomp).

This manifests Weiser's vision of a world with ubiquitous, invisible computing [Weiser, 1991]

embedded in smart ambient environments and carried by end-users in small devices. Anticipating,

adapting, and servicing user needs, these Ubicomp systems were envisioned to work calmly and

quietly, remaining in the background [Weiser and Brown, 1997], not getting in the way of the users’

work or activities.

An important part of this Ubicomp vision is context-aware computing [Dey, Abowd, and Salber,

2001; Schilit, Adams, and Want, 1994] with applications that automatically adapt and tailor their

behavior in response to the user’s current situation (or context), such as the user’s activity, location,

and environmental conditions. Using sensors to recognize or infer the user’s intent or situation,

context-aware applications do not need explicit user input to carry out their functions. Hence, these

applications implicitly determine what is happening and complement the user’s activity without

needing the user’s attention. Examples of context-aware applications include:

 Mobile tour guides, e.g., CyberGuide [Abowd et al., 1997], GUIDE [Cheverst et al., 2000]),

 Reminder systems, e.g., CybReminder [Dey and Abowd, 2000];

 Monitoring and awareness systems, e.g., Digital Family Portrait [Mynatt et al., 2001],

embedded assessment of the elderly [Lee and Dey, 2010; 2011], domestic activity [van

Kasteren et al., 2008], coworker awareness [Lim, Brdiczka, and Bellotti, 2010];

 Interruption management, e.g., for Instant Messaging [Avrahami and Hudson, 2006], on the

mobile phone [Lim and Dey, 2011a; Rosenthal, Dey, and Veloso, 2011], and in the office

[Tullio et al., 2007];

 Coordination, e.g., family transportation [Davidoff et al., 2011];

 Service or device automation, e.g., Intelligent Office System [Cheverst et al., 2005]

2 CHAPTER 1 | INTRODUCTION

Consider using context-awareness to manage interruption on a mobile phone. With the

proliferation of smart mobile phones, mobile applications can leverage embedded sensors in the

phones to provide context-awareness. A compelling application is for the phone to automatically

detect what the user is doing to determine whether it is an appropriate time for the user’s contacts

to call and interrupt her. For example, the application can detect if the user is in a conversation

(using the microphone for sensing and machine learning for inference) at the office (using Wi-Fi or

GPS sensing), or detect if she is driving a car (using the accelerometer for sensing and machine

learning for inference). Using a set of rules, it can infer whether the user is available.

In the previous example, as with many context-aware applications, the user does not need to

explicitly inform the application of her availability, or more generally, of her contextual situation,

and can expect the application to serve her need to be uninterrupted without her involvement. The

application uses implicit sensing, and complex inference to support context-awareness.

However, these designs and capabilities can lead to some user interaction issues.

1.1 THE PROBLEM ― LACK OF INTELLIGIBILITY

Since context-aware applications sense implicitly and act quietly, these applications lack the

affordances [Gibson, 1979] to allow end-users to be aware of what they know or what they are

doing. Bellotti et al. [2002] point out that with the vision of Ubicomp making the interface invisible,

it would become difficult for these systems to manifest themselves and allow users to make sense of

them. Dourish [1996] argues that interactive systems should give “accounts” — reflective

representations of their operations and externally observable states.

The complex inference mechanisms employed by context-aware applications also increase the

difficulty of understanding how these applications reason and decide. Bellotti and Edwards [2001]

propose that context-aware systems must be intelligible — “able to represent to their users what

they know, how they know it, and what they are doing about it.” They believe that, along with

enforcing user accountability, intelligibility “must be present for context-aware systems to be

useable, predictable, and safe.” Bellotti et al. [2002] also challenge Ubicomp systems to support

alignment between the user and system, by making the system state perceivable, persistent, and

query-able, and providing timely and appropriate feedback. Indeed, this lack of intelligibility has

been empirically observed. Barkhuus and Dey [2003a, b] found that although end-users want to use

context-aware applications, they have serious issues with the lack of understandability, loss of

1.2 A SOLUTION ― EXPLANATIONS FOR INTELLIGIBILITY 3

1
.2

 A
 So

lu
tio

n
 ―

 E
xp

lan
atio

n
s fo

r In
telligib

ility
 3

control, loss of privacy, information overload; users find automatic behavior useful but difficult to

understand.

Trust in automation guides reliance when the complexity of the automation makes a complete

understanding impractical [Lee and See, 2004]. This lack of system intelligibility in context-aware

applications and user confusion can lead users to mistrust and misuse, and even abandon them

[Muir, 1994; Muir and Moray, 1996]. Therefore, ensuring end-users have sufficient user trust of

these systems is crucial to supporting their adoption. Lee and See [2004] described three attributes

of trust in automation: predictability, performance, and purpose. Predictability and performance are

particularly relevant to the problem of the lack of intelligibility. Without sufficient understanding of

context-aware applications, end-users will find these applications’ behaviors less predictable, and

this can compromise user trust. Furthermore, context-aware applications are prone to ambiguity

and uncertainty [Greenberg, 2001]. This can cause them to make wrong inferences and misbehave,

compromising their performance. A common strategy for improving the performance of context-

aware applications involves user mediation, where the user resolves uncertainty [Dey et al., 2002].

Nevertheless, without intelligibility, end-users will struggle to determine the causes for uncertainty

and may not be able to improve the system performance.

1.2 A SOLUTION ― EXPLANATIONS FOR INTELLIGIBILITY

Providing explanations is a popular way to improve user understanding and user trust [Johnson,

1993] in Intelligent Systems. Dzindolet et al [2003] found that even though users lose trust in

intelligent decision aids which make occasional errors, providing a description of why the aid might

fail can help to increase users’ trust. Explanations have been shown to improve user understanding

and performance in expert systems (e.g., knowledge-base systems [Davis, Buchanan, and

Shortcliffe, 1977, Gregor and Benbasat, 1999], intelligent decision aids [Glass, McGuinness, and

Wolverton, 2008; Haynes, Cohen, and Ritter, 2009]) and end-user systems (e.g., recommender

systems [Herlocker, Konstan, and Riedl, 2000], intelligent user interfaces [Myers et al., 2009]).

We employ the same strategy of providing users with explanations of application state, inference

logic, and behavior for context-aware applications. For example, a context-aware application may

mis-infer the user’s availability to receive phone calls, and allow a colleague to call him at the

library. Intelligibility will allow the user to learn why this apparent mistake happened. It could tell

4 CHAPTER 1 | INTRODUCTION

him that the application correctly inferred his location at the library, but that he had forgotten to

set a rule to be unavailable, or that his colleague ignored social norms and called anyway.

1.2.1 THESIS STATEMENT

In this thesis, we explore how to provide intelligibility in context-aware applications through

explanation interfaces. We aim to support both developers to design and implement intelligible

context-aware applications, and evaluate the benefits and limitations of intelligibility on end-users.

With the intelligibility explanations we develop in this thesis, we claim that:

Intelligibility in context-aware applications can improve end-users’ understanding

of how these applications work and, consequently, increase end-users' trust to use

these applications.

1.2.2 THESIS APPROACH

To prove this thesis statement, we approach the problem in three high-level stages. First, we (i)

explore what intelligibility is and define it through exploratory work, then we (ii) facilitate and

support intelligibility so that it is easier to provide it, and finally, (iii) we evaluate the usefulness of

intelligibility towards the thesis goals. Figure 1.1 outlines the chapters in this dissertation.

Figure 1.1. Three-stage approach to thesis with various projects connected by progression.

Arrows indicate how findings and implications from one study applies to the next. We

summarize our taxonomy for Intelligibility in Chapter 3.

SupportRequirements Evaluation

Pilot
(Chapter 4)

‘Paper’ Prototype
(Chapter 8)

Design and
Usability

(Chapter 7)

Quasi-Field
(Chapter 9)Elicitation

from Scenarios
(Chapter 5)

Literature
Review

(Chapter 2)

Implementation
with Toolkit
(Chapter 6)

Design
Recommendations

1.2 A SOLUTION ― EXPLANATIONS FOR INTELLIGIBILITY 5

1
.2

 A
 So

lu
tio

n
 ―

 E
xp

lan
atio

n
s fo

r In
telligib

ility
 5

I) REQUIREMENTS GATHERING AND SPECIFICATION

In the first stage, we sought to define a framework for intelligibility. We accomplish this with a

literature review of explanations in intelligent systems (Chapter 2), and empirical work eliciting

what explanations potential users of context-aware applications would like to know (Chapter 5). To

this end, we have defined a taxonomy of explanation question types.

II) FACILITATION, SUPPORT, AND GUIDELINES

The next stage implements the requirements as determined from the taxonomy of intelligibility,

and provides generalized support for implementing intelligibility in context-aware applications

through a software toolkit and design recommendations. We facilitate the implementation of

intelligibility with the Intelligibility Toolkit (Chapter 6), and also explored and evaluated design and

usability issues to derive guidelines for providing and presenting intelligibility (Chapter 7).

III) EVALUATION

In the final stage, we evaluate intelligibility in context-aware applications. Using the toolkit and

design guidelines, we can rapidly prototype intelligibility in context-aware applications to test our

hypotheses. We investigated the impacts of different explanation types on user understanding and

trust of context-aware intelligent systems (Chapter 4). Next, through questionnaires, we evaluated

the impact of intelligibility on user impression of context-aware applications that are uncertain or

certain of their inferences (Chapter 8). We followed this with an evaluation of an interactive

prototype of an intelligible context-aware mobile application, where we investigated the extent of

usage of intelligibility, how well or poorly users understood the application inferences, and their

perceived usefulness of the explanations (Chapter 9).

1.2.3 INTELLIGIBILITY AS EXPLANATION TYPES

We support intelligibility through an explanation query paradigm (e.g., [Wick and Slagle, 1989; Ko

and Myers, 2003], where users can obtain explanations to questions about the context-aware

applications, such as:

1. What is the current value of the context?

2. Certainty: how certain or confident is the application of this inference?

3. Why is this context the current value X?

4. Why Not: why isn’t this context value Y, instead?

6 CHAPTER 1 | INTRODUCTION

5. How To: when would this context take value Y?

6. What if the conditions are different, what would this context be?

Categorizing explanations into these Explanation Types allows us to systematically investigate their

usefulness and how to support their provision in context-aware applications. We detail our

taxonomy of Explanation Types in Chapter 3.

1.3 SCOPE AND DEFINITIONS

There are several terms and concepts that are central to this dissertation and we define them here.

In this thesis, we focus on providing and evaluating explanations in context-aware applications

used by lay end-users for everyday computing activities. We use the definition of context-

awareness as defined in [Dey, Abowd, Salber, 2001; Schilit, Adams, and Want, 1994] regarding a

positivist, constructionist view of understanding of the environment and the user through

constituent contextual cues and signals that are sensed, aggregated, interpreted, and inferred.

These can include sensors around the house (e.g., thermostats, brightness sensors), in computer

software (e.g., keyboard and mouse activity), worn on the body or in mobile devices (e.g.,

accelerometers, microphones); and inferred activities and intentions such as domestic activity (e.g.,

making breakfast, using the toilet), and mobile availability and activity (e.g., driving, talking in a

meeting). On the other hand, the use of intelligibility, especially in a social application (e.g., Laκsa in

Chapter 7), can support the interactionist, phenomenological view of context [Dourish, 1994], where

context is relational, dynamic, depends on the social interactions, arises from activity, and is co-

constructed with the user. Intelligibility can provide users with more information to make better

sense of the situation.

There can be many different types of users of intelligent systems, with different relationships to the

systems and different domain expertise. We have scoped our investigation into context-aware

applications to cover “everyday” activities as defined in [Abowd, Mynatt, an Rodden, 2002;

Greenfield, 2006] (e.g., reminder systems, interruption management), rather than work task-

oriented or professional decision aids (e.g., medical diagnosis knowledge bases, task planning).

Finally, we target lay end-users as the consumers of the intelligibility features we seek to provide.

We do not expect these users to have technical or computer science expertise, nor will they

necessarily have deep interest in understanding the detailed operation of novel context-aware

1.3 SCOPE AND DEFINITIONS 7

1
.3

 S
C

O
P

E an
d

 D
efin

itio
n

s
 7

applications. Instead, we expect these users to primarily focus on their activities and pay attention

to intelligibility occasionally, e.g., when the applications misbehave or act unexpectedly.

We intend for context-aware applications to provide intelligibility to help end-users learn and

understand them. Much research has been performed on explanations in intelligent systems, using

different terms to describe an intelligible application, such as: explainable, interpretable [Mozina et

al., 2004], transparent [Cheverst et al., 2005; Cramer et al., 2008; Höök, 2000], scrutable [Assad et

al., 2007; Barua, Kay, and Kummerfeld, 2011], palpable [Rimassa, Greenwood, and Calisti, 2005],

“glass box” [Höök et al., 1996], white-box [Herlocker, Konstan, and Riedl, 2000], seamful [Chalmers

and MacColl, 2003], etc. Given the complex inference mechanisms and sensors used in context-

aware applications, there will be terms and concepts central to their operation that end-users may

not understand. Therefore, intelligibility can help end-users to learn the relevant terminology and

concepts, so that they may properly scaffold and form more accurate mental models [Johnson-Laird,

1983]. We do not intend for end-users to learn these concepts to the extent which students learn

from their coursework (as is the intention of Intelligent Tutoring Systems, e.g., [Anderson et al.,

1995]), nor do we expect end-users to understand the application to be able to debug their code

(e.g., Whyline [Ko and Myers, 2003]). We aim to use intelligibility to allow end-users to understand

the factors or sensors that influence the inference and decision making in context-aware

applications, so that they may be aware of and appreciate the competence of the applications’

complex inference (assuming reliable performance). We also want end-users to understand the

limitations of the applications.

We aim is to improve end-user trust by improving the end-user’s “ability to estimate predictability

of the [application’s] behaviors” by making the behaviors “observable” [Muir, 1994]. Lee and See

[2004] identified three processes underlying trust: analytic, analogical, and affective. Analogical

trust is influenced by the context, environment of use, and other social factors such as reputation.

Affective trust is influenced by the user’s emotional response and allows her to reduce her cognitive

burden when deciding how much to trust the application. Parasuraman and Miller [2004] found that

differences in machine etiquette (e.g., providing messages at appropriate or disturbing times, whether

polite or impolite) can influence user trust more than the automation reliability. This demonstrates

an influence of affect on user trust. Analytic trust relates to the user’s understanding of the logic of

the application and is influenced by the user’s cognition. Though we acknowledge the importance of

each type of trust, in this thesis, we focus on promoting analytic trust by improving the user’s

understanding of the application’s behavior. We also aim to help users to better calibrate their trust

8 CHAPTER 1 | INTRODUCTION

[Dzindolet et al., 2003] in context-aware applications with their increased understanding of the

competence and limitations of these applications.

Finally, Edwards, Newman, and Poole [2010] noted that low-level infrastructure on which

applications are built should also be made intelligible. Although we provide a toolkit to support

intelligibility, our focus in this thesis is to support intelligibility for end-user applications.

1.4 CONTRIBUTIONS

This dissertation makes a number of major contributions:

 Evidence that end-users want intelligibility in context-aware applications.

 A taxonomy of explanation types that end-users desire to have provided for context-aware

applications.

 A toolkit for supporting the development of intelligibility in context-aware applications.

 Algorithms to generate multiple explanation types from several rules and machine learning

inference models.

 Design recommendations for intelligibility features.

 A prototype of an intelligible context-aware application developed through several

iterations.

 Investigation of caveats and limitations of providing intelligibility (usability issues and

intelligibility of uncertain systems)

 Evidence that end-users can use intelligibility features to learn about context-aware

inferences and behaviors

 Evidence that providing intelligibility can improve end-user understanding and trust in

context-aware applications

1.5 OUTLINE

The rest of the dissertation is organized as follows:

To give a background to this dissertation, in Chapter 2, we review explanations in intelligent

systems, various taxonomies of explanations, and systems that provide explanations to users. In

Chapter 3, we give an overview of intelligibility as defined in this dissertation. We describe research

1.5 OUTLINE 9

1
.5

 O
U

T
L

IN
E

 9

questions that drove various projects in the thesis and introduce a taxonomy of explanation types

that intelligible context-aware applications can provide. The following chapters are organized

chronologically and in the order that follows from the chain of reasoning in our research questions.

Chapter 4 describes early work demonstrating the usefulness of intelligibility to help end-users

understand and trust the output of a context-aware intelligent system. Particularly, we compare the

effectiveness among four explanation types. Subsequently, in Chapter 5, we describe our expansion

of the list of explanation types through an elicitation study by presenting questionnaires of various

applications and scenarios to participants.

Chapter 6 describes how we support the implementation of our taxonomy of explanation types with

an Intelligibility Toolkit to automatically generate and present explanations from multiple inference

models. However, the toolkit does not provide design recommendations on how to present

explanations to users. In Chapter 7, we describe a user study that explored design and usability

issues for intelligibility interfaces in a context-aware application prototype, Laκsa.

Having designed a usable, intelligible context-aware application, we evaluate the impact of

intelligibility. Chapter 8 describes a questionnaire study that investigated the positive and negative

impact of intelligibility for application inferences with high or low certainty, respectively. Chapter 9

describes a quasi-field study evaluating the usage and usefulness of intelligibility in our Laκsa

prototype, showing how usage of intelligibility helps end-users to better understand and

troubleshoot the application inference.

In Chapter 10, we conclude the dissertation with a summary of its contributions and a discussion of

its limitations. We include several appendices describing detailed technical aspects of the

Intelligibility Toolkit, descriptions of the intelligibility user interface of the Laκsa prototype, and

experiment study materials.

11

2 RELATED WORK:
EXPLANATIONS IN INTELLIGENT

SYSTEMS

In this chapter, we review the explanation taxonomies developed in several research domains of

different types of intelligent systems. Research in several domains have explored the impact of

explanations to improve user trust and acceptance of intelligent systems, including knowledge-

based systems (see a review in [Gregor and Benbasat, 1999]), task processing systems (e.g., [Glass,

McGuinness, and Wolverton, 2008; Haynes, Cohen, and Ritter, 2009; McGuinness et al., 2007;

Silveira, de Souza, and Barbosa, 2001]), intelligent tutoring systems (e.g., [Graesser, Person, and

Huber, 1992; Graesser, Baggett, and Williams, 1996]), recommender systems (e.g., [Herlocker,

Konstan, and Riedl, 2000; Cramer et al., 2008]), case-base reasoning (CBR) (e.g., [Kofod-Petersen,

Cassens, and Aamodt, 2008; Sørmo, Cassens, and Aamodt, 2005]), end-user debugging (e.g., [Ko and

Myers, 2004; 2009; Myers et al., 2006]), and context-aware systems (e.g., [Assad et al., 2007;

Cheverst et al., 2005; Tullio et al., 2007; Vermeulen et al., 2009]), etc. These domains can be

categorized into two groups, namely, expert systems handling professional tasks and end-user

systems handling "everyday" activities. We discuss how we draw inspiration from these works that

have investigated explanations over the past several decades, and identify gaps and opportunities

for providing explanations for context-aware applications in ubiquitous computing (Ubicomp).

2.1 EXPLANATIONS IN EXPERT SYSTEMS

Much early research on explanations in intelligent systems were focused on expert systems to help

professionals to learn how the system makes decisions, or to help novices to learn about decision

making. As such, several frameworks of explanations have been developed.

12 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

2.1.1 KNOWLEDGE-BASED SYSTEMS

Drawing from explanation facilities of many knowledge-based systems (KBS), Gregor and Benbasat

[1999] identify three classification methods of explanation type: content, presentation format,

and provision mechanism. They found that KBS systems provide four content types of

explanations:

1. Trace or line of reasoning. In response to the typical “why” question, this explanation type

describes the decision processes taken by the system, why or how it came to its result.

Explanations that EMYCIN [Van Melle, Shortliffe, and Buchanan, 1984] provided are of this

type.

2. Justification or support. Introduced in the XPLAIN system [Swartout, 1983], this type of

explanation provides deeper domain knowledge to justify the system’s process. These deep

explanations can incorporate different types of knowledge such as analogies, cases, and text

books.

3. Control or strategic. Introduced in NEOMYCIN [Clancey, 1983], this type of explanation

explains the “system’s control behavior, and problem solving strategy.” This provides the

user with the design rationale that the developers employed for the application logic.

4. Terminological. Distinguished by Swartout and Smoliar [1987], this type of explanation

familiarizes users with domain terms and concepts by providing terminologies and

definitions.

There are several factors, such as user expertise, that affect when certain explanation content

types are more important. For example, novice users would use justification and terminology

explanation types more as they learn how to use the expert system; expert users would mainly use

explanations to resolve anomalies and for verification, so they would prefer reasoning traces and

control types of explanations.

Presentation styles used in KBS systems have been identified to fall into two categories: Text-

based and Multimedia. Text-based explanations can either be in the form of programming

language syntax, a canned text of the programming logic, or natural language translations of the

logic. Multimedia explanations use graphics, images, animations, or sound.

Gregor and Benbasat have also identified three types of mechanisms to provide explanations: user-

invoked, automatic, and intelligent. User-invoked (also known as on-demand, optional, or

2.1 EXPLANATIONS IN EXPERT SYSTEMS 13

2
.1

 E
X

P
L

A
N

A
T

IO
N

S in
 E

xp
ert System

s
 1

3

voluntary) explanations can be provided through menus, commands, and hyperlinks, and users can

choose whether or when to invoke them. Automatic explanations are provided all the time, and

users do not get a choice of whether to receive them. To maximize exposure of certain explanations,

and minimize the perceived effort of obtaining these explanations, Everett [1994] recommends

making these explanations automatic. Intelligent provision of explanations depend on the system

determining when is most appropriate to provide the explanations. Gregor and Benbasat discuss

employing user modeling to track their expertise and mental model (and whether they are making

mistakes) for the system to determine when to provide explanations.

2.1.2 INTELLIGENT DECISION AID

The knowledge-based systems discussed by Gregor and Benbasat [1999] deal mainly with

supporting decisions, or helping users decide what to do, rather than acting on their behalf. On the

other hand, there is a growing number of systems that are being designed to be more proactive, and

have greater autonomy to carry out tasks. These systems, also called intelligent agents, would have

to gain the trust of users before they can be widely accepted. One way to increase user trust is to

increase transparency in these systems, such as by answering explanation questions. Haynes,

Cohen, and Ritter [2009] did an extensive review of explanations in intelligent agents (systems that

“make use a knowledge-base and algorithm to carry out its responsibilities”), using a wider scope of

systems than just KBS. They extend and reorganize Graesser et al.’s [1992] classification of 13

explanation-seeking questions into a framework of four main explanation types: ontological,

mechanical and operational explanations, and design rationale.

 Ontological explanations provide “what” information to help users make sense of a concept

or a component of the system, including:

o What – identity. Basic ontological information about the existence of an agent or

agent component, or its identifier.

o What – definition. Information beyond simply identifying an agent or component

and involves providing it with some meaning in context through definitions.

o What – relation. Information about the static structural relation between agents or

their components, such as spatial information.

o What – event. Especially distinguished, this is information about entities that are

primitives in describing causal explanations, and can provide temporal information.

14 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

 Mechanistic explanations deal with the how of agent behavior. The main type of question is

"How does it work?" This type of explanations provides information about how different

components interact to give rise to more complex actions.

 Operational explanations answer the question of "How do I (the user) use it (the system)?"

They provide instructions for the user or other agents to enact some agent behavior.

 Design rationale explanations deal with why questions at multiple levels from system

component constraints to designer intentions to law-like relations. In relation to the

taxonomy provided by Gregor and Benbasat, the design rationale spans reasoning trace and

strategic. Haynes et al. categorize design rationale into four parts:

o Deductive-Nomological (D-N). Explanations referring to some law or law-like

relation between entities and/or agents. This is based on the D-N model that

suggests that explanations should take the form of deductive statements predicated

on well-established truths [Hempel, 1965].

o Functional. Design intent of the function of a created agent or component.

o Structural. Explanations that refer to the structure of the system constraints that

cause an entity or event to happen.

o Pragmatic. Explanations to requests that depend on the user’s interest value. These

explanations are in response to either why not or what if questions.

In an empirical study using a virtual pilot cognitive model intelligent agent, Haynes et al. found that

most explanation seeking questions (58%) were ontological, followed by mechanistic (19%), then

operational (12%) and design rationale (11%).

McGuinness and colleagues have explored explanation needs for task processing systems,

particularly with the Cognitive Assistant that Learns and Organizes (CALO, 2007). Focusing on

temporal characteristics, McGuinness et al. [2007] articulated several types of explanation

questions that users of task processing systems are interested in:

 Motivation for tasks. In response to the question “why are you doing <task>?”, answer

strategies can (i) include identifying the task requestor (attribution), (ii) indicating that the

task is a subtask that supertask depends on, (iii) indicating the task is next-in-step of a task

procedure, and (iv) indicating that certain terminating conditions have not yet been met.

2.1 EXPLANATIONS IN EXPERT SYSTEMS 15

2
.1

 E
X

P
L

A
N

A
T

IO
N

S in
 E

xp
ert System

s
 1

5

 Task status. This regards to (i) what tasks are being done, (ii) what the status of those

tasks are, (iii) whether certain tasks are not being done (what didn’t), and (iv) whether any

tasks are being hindered.

 Task history. This regards to (i) what the system has done recently, (ii) what it has started

recently, (iii) why it did a task (in the past, as opposed to why it is doing), (iv) why it didn’t

do a task, (v) how it did a task, and (vi) and variants of reasoning regarding what didn’t

questions.

 Task plans. While task history looked into past actions, task plans looks into the future

planned actions. This regards to (i) what the system will do next, (ii) when it will start the

task, (iii) why, and (iv) how it expects to do it.

 Task ordering. This regards to (i) why a task is being done before another, (ii) why some

other task has not yet been started, and (iii) what needs to be done to complete a task.

 Explicit time questions. This regards to (i) when a task will begin, or (ii) end, (iii) when a

task happened, (iv) how long it took to complete, (v) why a task took so long to complete,

(vi) why a task is already being done instead of later.

While users of task processing systems may have many questions regarding time, they have other

information requirements before they can appropriately trust these applications. Through

structured interviews with users of CALO, Glass et al. [2008] investigated several factors that

influence their level of trust. They used Silveira et al.’s taxomony [2001] of users’ frequent doubts

to derive a list of question types users are interested in:

 Choice: What can I do right now?

 Procedural: How can I do this?

 Informative: What kinds of tasks can I accomplish?

 Interpretive: What is happening now? Why?

 Guidance: What should I do now?

 History: What have I already done?

 Descriptive: What does this do?

 Investigative: Did I miss anything?

 Navigational: Where am I?

16 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

These questions are ordered by the rated importance from the interviews. While question types

defined by McGuinness et al. [2007] were mainly about time, and about the system, these questions

are about the user and his activity.

2.1.3 INTELLIGENT TUTORING SYSTEMS

While not quite expert systems to aid workers in their work, Intelligent Tutoring Systems provide

expert knowledge (of the domain or concept being studied) to students. The knowledge or

information can be provided via explanations. Graesser et al. have explored how students ask

questions and derived several explanation types and reasons for question asking. Graesser and

McMahen [1993] four conditions when questions are asked:

 Anomalous event. Questions are asked about the causes and consequences of an unusual

event, e.g., if someone faints in a restaurant.

 Contradiction. Questions are asked to resolve a contradiction between two propositions,

e.g., two people who claim to be married but are not wearing wedding rings.

 Obstacle to a goal. Questions are asked to remove or circumvent an obstacle to a goal, e.g.,

when a car fails to start, the driver will ask why it will not start and how it can be fixed.

 Equally attractive alternatives. Questions are asked to break a tie between a set of

alternatives, e.g., pros and cons of switching jobs, choosing different products.

From empirical analyses of questions in educational settings, Graesser and Person [1994] grouped

Lehnert’s [1987] 16 question categories into three depth levels:

 Simple / shallow questions

o Verification: invites a yes or no answer

o Disjunctive: Is X, Y, or Z the case?

o Concept completion: Who? What? When? Where?

o Example: What is an example of X?

 Intermediate questions

o Feature specification: What are the properties of X?

o Quantification: How much? How many?

o Definition: What does X mean?

o Comparison: How is X similar to Y?

2.1 EXPLANATIONS IN EXPERT SYSTEMS 17

2
.1

 E
X

P
L

A
N

A
T

IO
N

S in
 E

xp
ert System

s
 1

7

 Complex / deep questions

o Interpretation: What does X mean?

o Causal antecedent: Why / How did X occur?

o Cause consequence: What next? What If?

o Goal orientation: Why did an agent do X?

o Instrumental / procedural: How did an agent do X?

o Enablement: What enabled X to occur?

o Expectation: Why didn’t X occur?

o Judgmental: What do you think of X?

While these questions are not specifically for end-users to ask of automated systems, many of them

are relevant (e.g., example, feature specification, comparison, causal antecedent, goal orientation,

expectation). Point and Query, an educational software [Graesser, Langston and Baggett 1993]

provides explanations to questions in terms of levels of knowledge:

 Taxonomic knowledge: What does X mean? What are the types of X? What are the

properties of X?

 Sensory knowledge: What does X look like? What does X sound like?

 Goal-oriented procedural knowledge: How does a person use / play X?

 Causal knowledge: What causes X? What are the consequences of X? How does X affect

sound? How does a person create X?

2.1.4 RELATION TO CONTEXT-AWARE APPLICATIONS

The aforementioned frameworks provide a rich design space for different types of explanations.

However, they cater to expert systems with users who carry out tasks that require expert decision

making. Context-aware applications in ubiquitous computing focus on helping lay end-users in

"everyday" activities [Abowd, Mynatt, and Rodden, 2002], so their users would require a different

set of explanations. For example, we expect the functional purpose of context-aware applications to

be clearer than expert systems because, as everyday products, their functional scope would be

limited. Therefore, we do not anticipate functional explanation types to be very necessary.

Nevertheless, some of these explanation types remain useful for context-aware applications.

In this thesis, the explanations we provide for intelligibility are mainly about the application's line

of reasoning, or mechanistic. We treat context-aware applications as inference and decision agents,

18 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

and, through intelligibility, reveal their reasoning process. We take a user-centered approach, and

therefore, also provide pragmatic design rationale explanations to explain to end-users how the

application inferred in the context of the user's goals (why not) or present understanding of the

situation (what if). While users should not have to be overly bothered by technical terminology

when using everyday applications, to explain some of the low-lying contexts and reasoning traces,

terminological explanations may be needed to help users learn relevant explanatory concepts. We

also expect users to act on the information they learn from intelligibility, but they would need to

know how they can modify or control the context-aware application. Therefore, operational

explanations would also be relevant to provide in context-aware applications.

2.2 EXPLANATIONS IN END-USER SYSTEMS

Research into explanations for KBS or task processing systems tends to focus on trained or

reasonably knowledgeable users. However, explanations can be useful for novice end-users to

understand unfamiliar programs too, even those that help with their everyday tasks.

2.2.1 RECOMMENDER SYSTEMS

Currently, explanations of end-user systems are most accessible to people through online

recommender systems like Amazon's recommendation of products, Pandora.com's song selection,

etc. Herlocker, Konstan, and Riedl [2000] described two sources of errors: model/process, and data.

 Model/process errors are due to the limited feature space of the computational model

used;

 Data errors are due to (i) not enough data, (ii) poor or bad data, or (iii) high variance data.

To support explanations, Herlocker et al. discuss white-box and black-box models. The white-box

model divides the Automated Collaborative Filtering (ACF) system into three parts: user profile

ratings, similarity measures used to compare profiles, and the model or mechanism of how the

ratings are combined to form recommendations. These explanation capabilities may help users

understand the conceptual model of the system, but this may not be desirable all the time,

especially for guarding proprietary methods. The black-box model is appropriate for such

situations, and use alternative information to explain the system. Techniques include providing

information about past performance justification (e.g. that the system was 80% correct in the past

when recommending this), and using external supporting evidence (justification type explanations).

2.2 EXPLANATIONS IN END-USER SYSTEMS 19

2
.2

 E
X

P
L

A
N

A
T

IO
N

S in
 E

n
d

-U
ser System

s
 1

9

Tintarev [2007] classifies the explanation types used in recommender systems in several types

such as case-based, content-based, collaborative, demographic, and knowledge-based. Much

of these explain the recommendations regarding the similarity of the attributes of the entities of

interest (e.g., speed of camera), of the user (e.g., demographic information), preference similarities

between users (e.g., the user preferring low prices).

To explore the impact of explanations on consumers’ trusting beliefs in online shopping (e-

commerce) recommendation agents (RAs), Wang and Benbasat [2007] examined the effects of three

types of explanations:

 How explanation to reveal the line of reasoning used by the RA. This increased perceived

benevolence that the RA acts in the consumer’s interest.

 Why explanation to justify the importance and purpose of the RA to consumers. This

increased perceived competence (performance) and benevolence in the RA.

 Trade-off explanation to offer objective decision guidance to help consumers identify

differences in features between products. This increased perceived integrity that the RA

adheres to a set of principles (e.g., honesty, justice, objectivity).

Note their use of the terms why and how differ from how they are used in the rest of this

dissertation.

Cramer et al. [2008a, b] investigated the effects of transparency in an art recommender, Cultural

Heritage Information Personalisation (CHIP) system, on user trust. They considered three versions

of CHIP: non-transparent, transparent (provides Why explanations listing properties the current

recommendation shares with artworks the user had previously rated positively, and ‘sure’

(showing a Confidence rating of the system’s recommendation). They found that providing Why

explanations increased user acceptance of the system, but did not improve user trust. Furthermore,

they found that Confidence (Certainty) explanations did not improve acceptance or trust.

Even though these similarity-based approaches are highly effective for recommender systems,

context-aware applications also use context information about the physical environment and

situation. Moreover, context-aware applications can use other types of models to make inferences.

From a literature survey of context-aware applications [Lim and Dey, 2010] and in Section 6.2, we

found that the most popular models are indeed different: rules, decision trees, and naïve Bayes

20 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

classifiers. Therefore, while explanations have been richly studied for recommender systems,

research into explanations for context-aware applications remains an open problem.

2.2.2 CASE-BASE REASONING

Given the focus on unique and similar products or entities that recommender systems have,

recommender systems can also be considered as systems operating on a collection of cases. This

lends itself nicely to applying techniques in Case-Based Reasoning (CBR). For example, Top Case

[McSherry, 2005] provides explanations to discriminate between different cases and explain why

one is better than another. It explains in terms of attributes of the cases, indicating whether they

are the same or different for different cases, and which attributes do not affect the

recommendation.

Some research has sought to provide frameworks for explanations in CBR. Roth-Berghofer [2004]

describes five explanation types of [Spieker, 1991] relevant to CBR:

 Conceptual explanations to describe the meaning of concepts

 Why explanations to describe the cause or justifications for an event

 How explanations as a special case of Why explanations to describe the causal chain of the

decision process

 Purpose explanations to describe the purpose of a fact or object

 Cognitive explanations as a special case of Why explanations. The previous four

explanation types explain the physical world in which the CBR system operates on, while

these explain the processing and behavior of the system.

Roth-Berghofer describes knowledge containers (vocabulary, similarity measures, adaptation

knowledge, and case-base) as components of the CBR system which contribute variously to these

explanations.

Sørmo, F., Cassens, J., and Aamodt [2005] identified five goals for explanations in CBR to satisfy:

 Transparency to explain how the system reached the answer

 Justification to explain why the answer is a good one

 Relevance to explain why a strategy is relevant

 Conceptualization to clarify the meaning of concepts and vocabulary

 Learning to teach the user about the domain

2.2 EXPLANATIONS IN END-USER SYSTEMS 21

2
.2

 E
X

P
L

A
N

A
T

IO
N

S in
 E

n
d

-U
ser System

s
 2

1

Cassens [2008] employ problem frames [Jackson, 2000] to model explanation machines and system

knowledge to meet these goals.

CBR has also been applied to ambient intelligent systems (e.g., [Cassens and Kofod-Petersen, 2007;

Kofod-Petersen and Aamodt, 2003; Ma et al., 2005; Zimmermann, 2003]). For example, Cassens and

Kofod-Petersen [2007], added explanation capabilities the CREEK architecture [Aamodt, 2004] in a

simulated hospital ward domain. For user-centric explanations, they distinguish between context-

awareness (inferring the situation) and context-sensitivity (acting according to the situation) and

respectively provide different explanations:

 Elucidate why the system identifies a particular situation (context-awareness). This

explanation exposes the system’s assumptions of the environment to justify what it believes.

 Explicate why a certain behavior was taken (context-sensitivity). This explanation points

out the relevance of the system performing a particular action.

2.2.3 END-USER PROGRAMMING

End-user programming considers users whose primary task is not to program the application, but

who still do so to facilitate their task or configure the application. For example, people who use

spreadsheets to tabulate and calculate budgets can be considered end-user programmers. Ko and

Myers [2005] found that end-user programmers of the Alice programming environment [Conway et

al., 2000] asked questions when their expectations are unmet. They asked why did questions when

something unexpected occurs and why didn’t questions when something expected does not

happen. Ko and Myers subsequently develop the Whyline system [2004, 2009] that traverses the

program tree to generate reasoning traces within the program code to generate why did and why

didn’t explanations:

 Why did the program do X?

 Why didn’t the program do Y?

Kulesza et al. [2011] developed the What You See is What You Test for Machine Learning

(WYSIWYT/ML) method that supports systematic testing of machine learning applications,

particularly for high criticality tasks. WYSIWYT/ML provides explanations of

 Confidence to indicate how certain the system was of its classification

 Similarity of how different the example is from previously trained data

22 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

 Relevance of how able the system is to perform the classification

 History to help users track inference changes after the users make edits

This is complementary to our approach of supporting ad hoc testing of context-aware applications,

where end-users serendipitously learn about the applications’ behavior. It assumes that some end-

users will take the effort to perform such a rigorous test. We do not assume such enthusiasm and

effort of end-users, and explicitly measure their usage in our study described in Chapter 9. As

demonstrated with WYSIWYT/ML [Shinsel et al., 2011], explanation and testing facilities can also be

helpful for multiple stakeholders or “mini-crowds” that share the use of intelligent agents to

collectively improve the behavior of a machine learning system. However, we focus on single-user or

single-viewer use of intelligibility in this thesis.

Although machine learning is becoming popular for developers of intelligent adaptive systems, it still

remains difficult for developers to understand and debug their programs. Patel et al. has investigated

the classification pipeline [Patel et al., 2008], and developed several tools (e.g., Gestalt [Patel et al.,

2010], Prospect [Patel et al., 2011]) to help developers implement classifiers and analyze their data.

Although the applications investigated were for end-users, Patel et al. focused on supporting

programmers familiar with machine learning. We focus on end-users with no knowledge of machine

learning in this thesis.

2.2.4 INTELLIGENT AND ADAPTIVE USER INTERFACES

Intelligent and adaptive user interfaces are closely linked to context-aware, but typically describe

desktop-based applications, e.g., spam filters, email sorters, or office application assistants. They

typically perform user modeling to understand the user needs and adapt accordingly. To increase

their predictability to end-users, Höök [2000] argues for user-adaptive systems to be transparent.

She describes three glass box levels from [Brown, 1989]:

 Domain transparency for the user to see the application domain or concepts relevant to

the system,

 Internal transparency for the user to see the internal workings of the system, and

 Embedding transparency for the user to see a whole picture of how she relates to the

system.

Myers et al. [2006] apply the Whyline explanation types (why did and why didn’t) to end-user

“everyday” productivity tools with the Crystal framework to support these explanations in a sample

2.2 EXPLANATIONS IN END-USER SYSTEMS 23

2
.2

 E
X

P
L

A
N

A
T

IO
N

S in
 E

n
d

-U
ser System

s
 2

3

text editor that has auto-correct features. Following this question-asking approach, Kulesza et al.

[2009] investigated the provision of why… and why not… explanations for an email client that uses

the naïve Bayes machine learning classifier to sort email. Due to the probabilistic nature (rather

than deterministic or rule-based) of the naïve Bayes classifier, reasoning traces were not used for

the explanations, but a representation of weights from various inputs (keywords). Explanations

were provided as a rich visualization of bar charts.

Kulesza et al. [2012] explored whether end-users can quickly build and recall sound structural mental

models of an intelligent music recommender system. They found that scaffolding with a human tutor

can help end-users to build mental models with greater soundness, and allow them to subsequently

better operate the system. Even though the scaffolding was not done through the system interface,

this gives evidence that end-users can learn to better and effectively understand such complex

systems. In this thesis, we minimize scaffolding via human tutors or instructions, such that end-users

learn about the system behavior and inference through the intelligibility provided via the interface.

2.2.5 RELATION TO CONTEXT-AWARE APPLICATIONS

It is intuitive that end-users would also ask why and why didn't questions for other "everyday"

applications, and, in the proposed thesis, we take this approach of providing explanations to these

questions, but generalize it for context-aware applications. Our work leverages some explanation

techniques from Kulesza et al., extending them to explain physical contexts that are more relevant

for context-aware applications. Furthermore, the overall approach in end-user programming is to

allow the end-user to debug the application when it behaves inappropriately. We broaden the use

of explanations to be used in more situations, even when the application is functioning

appropriately.

2.2.6 UBIQUITOUS AND CONTEXT-AWARE COMPUTING

Context-aware applications for ubiquitous computing present new challenges for providing

explanations to end-users. These applications would penetrate everyday life and have a wide

impact on end-users [Abowd, Mynatt, and Rodden, 2002]. Furthermore, many of these systems

would automatically gather information (contexts) about the user and environment and implicitly

take various actions [Dey, Abowd, and Salber, 2001]. However, such activity done “quietly” without

the user’s knowledge [Weiser and Brown, 1997], without much transparency, can be disconcerting

to users who may like to know how their information is being used.

24 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

Bellotti and Edwards [2001] state that context-aware applications must be intelligible: being able to

“represent to their users what they know, how they know it, and what they are doing about it.” They

proposed a framework for intelligibility and accountability including four principles:

1. Inform the user of current contextual system capabilities and understandings.

2. Provide feedback including:

 Feedforward: What will happen if I do this?

 Confirmation: What am I doing and what have I done?

3. Enforce identity and action disclosure particularly with sharing restricted information:

Who is that, what are they doing, and what have they done?

4. Provide control (and defer) to the user, over system and other user actions that impact her,

especially in cases of conflicts of interest.

In this thesis, we cover aspects of the first two principles exposing the application capabilities by

selecting relevant information and informing users of the systems’ understandings through

generating explanations. We also support feedback through various explanation types.

2.2.6.1 INTELLIGIBLE CONTEXT-AWARE APPLICATIONS

A simple form of intelligibility is to show the Certainty of the application’s inference. Antifakos and

colleagues showed that uncertainty improved task performance speed of participants when

certainty is high [2004], and that participants verified automatic settings made by a context-aware

system less often when its certainty was high or medium [2005]. In studies of presenting location

information [Dearman et al., 2007; Lemelson et al., 2008], visualizations of location certainty were

found to improve user performance with location-based services.

Some early intelligible context-aware applications provide end-users with a modest amount of

explanations to give them insight mainly by providing transparency (showing the application's

underlying state) and traceability (showing reasoning trace) information. Cheverst et al. [2005]

investigated how much users would want to know about rules governing a context-aware system

and whether to control it. The system takes actions depending on context changes (and history) and

the user model (e.g. preferences), and displays to users its rules of a fuzzy decision tree and its

certainty about the inference. McCreath, Kay, and Crawford [2006] explored the difference in

scrutability of different machine learning classifiers (sender identity, keywords, TF-IDF, decision

trees, naïve Bayes) in their Intelligent-Electronic Mail Sorter. The Daily Activities Diarist [Metaxas et

2.2 EXPLANATIONS IN END-USER SYSTEMS 25

2
.2

 E
X

P
L

A
N

A
T

IO
N

S in
 E

n
d

-U
ser System

s
 2

5

al., 2007], an awareness display to support aging in place (like the Digital Family Portrait [Mynatt et

al., 2001]), employs narratives complemented with graphical visualizations to provide semantic cues

and explanations. Tullio et al.'s interruptibility displays [2007] explain how they determine a

manager's interruptibility by exposing the values of sensors in the manager's room. Panoramic

[Welbourne et al., 2010] provides reasoning trace, location status, and history explanations to

explain location events through a visualization of parallel timelines of sensed and rule-determined

events. Vermeulen et al. explored several interfaces to provide intelligibility in ambient intelligent

(AmI) environments. They projected trajectory visualizations along the wall of an AmI room,

tracing the application operation from sensor input (e.g., camera motion sensor) to actuator output

(e.g., room light) [Vermeulen et al., 2009]. The PervasiveCrystal [Vermeulen et al., 2010] also

explains for processes in a smart environment by providing Why and Why Not explanations from a

mobile screen display.

2.2.6.2 FRAMEWORKS TO SUPPORT INTELLIGIBILITY IN CONTEXT-AWARE COMPUTING

Some frameworks and toolkits have also been developed to provide wider support for intelligibility

in context-aware applications. SpeakEasy [Newman et al., 2002] supports querying and displaying

of the states of devices (PCs, printers, projectors, etc.) in an environment, allowing users to

discover if they are available, they have failed, etc. PersonisAD [Assad et al., 2007] defines a

distributed framework to support explanations by resolving identities and associations of

devices, locations, people, etc. It makes user models scrutable so that users can control which parts

of their user model can be private or public and visible to the sensing environment. Personis-LF

[Barua, Kay, and Kummerfeld, 2011] extends this concept of scrutability to life-long personalization

and adds capabilities to control forgetting information. While this is important for deployed

systems, this thesis does not cover the scope of longitudinal use of intelligibility. Hardian et al.

[Hardian, 2006; Hardian, Indulska, and Henricksen, 2008] added a Logging and Feedback Layer

along with a Query Interface to the Pervasive Autonomic Context-aware Environments (PACE)

middleware [Henricksen and Indulska, 2006] to reveal elements that influence application

behavior. However, as pointed out by Fong [2010], these components expose information that is

too low-level and overly technical.

Dey and Newberger [2009] provide the Enactors toolkit to support intelligibility and control in

context-aware applications by adding the Enactor component to the Context Toolkit. For

intelligibility, it allows applications to provide input context values, and reasoning traces. For

control, it exposes parameters that the UI layer of the application can allow users to interact with

26 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

and manipulate. This thesis extends the scope of intelligibility to allow users to ask more questions

of the application's state and inference mechanism. For example, users would be able to ask about

an anomaly with a Why Not question, and ask about a possible future scenario with a What If

question.

Vermeulen [2010] proposed to explore the design space for providing and presenting intelligibility

in Ubicomp systems along the dimensions of:

 timing — before, during, or after an event

 generality — general, or domain-specific

 degree of co-location — whether intelligibility is provided in the same UI or separately

 initiative — user, or system initiated

 modality — visual, auditory, haptic

 level of control — not controllable to fully programmable

This thesis takes a different approach to investigate intelligibility in context-aware applications.

Rather than explore multiple presentation styles for intelligibility, we have explored the provision

of intelligibility from an information-centric perspective. End-users are considered information

consumers of explanations, and intelligible applications as information providers through the

explanations they can generate, and present. Presentation styles are definitely important for the

effective assimilation of explanations and conveyance of intelligible information, but we have

treated finding the best solutions for presenting explanations in different applications mainly as a

design exercise.

Inspired by our taxonomy of explanation types (see Chapters 4 and 6), TOSExp (TinyOS Explained)

[Bucur, 2011] supports intelligibility in embedded context-aware applications by providing static

explanations to explain the Inputs values and Outputs range of the application, and What If and How

To explanations that describe hypothetical behaviors of the application. It operates at an embedded

systems level to provide bit-accurate explanations that while being very precise, may suffer from a

lack of user-friendliness by being too low level or too detailed. This thesis focuses on systems and

applications at higher programming abstraction layers (i.e., application logic) and also prioritizes

explanations that are more usable for end-users.

Targeting end-user preference models for context-aware systems, Fong et al. [2010, 2011] developed

an intelligible preference modeling approach that expresses preferences in terms of if-then-else rules.

2.2 EXPLANATIONS IN END-USER SYSTEMS 27

2
.2

 E
X

P
L

A
N

A
T

IO
N

S in
 E

n
d

-U
ser System

s
 2

7

Their system can generate explanations to questions of What, Why, Why Not, How To, and Control.

As such, this is limited to preference modeling and rules. In this thesis, we do not restrict our

contributions to just rules and include machine learning models and models for other purposes, such

as activity recognition.

Metaxas [2010] investigated supporting intelligibility in the Contextual Range Editor (CoRE) for end-

users to configure rules for awareness systems. He consider rules presented in text templates and

whether to present the rules in disjunctive normal form (DNF) or conjunctive normal form (CNF)

depending on the affinity of logical terms (e.g., “driving” and “running” have higher affinity than

“running” and “talking”). In Chapter 6, we also consider DNF for representing explanations of rules,

and can integrate Metaxas’ findings within the framework of the Intelligibility Toolkit.

2.2.6.3 INTERPRETABLE MACHINE LEARNING

Machine learning is a popular technique to enable inference and activity recognition in many

context-aware applications (see review in Chapter 6). For example, machine learning is used to

recognize what activity an occupant in the home is performing [van Kasteren et al., 2008]. To

support intelligibility in these applications using machine learning models, these inference models

will need to be intelligible too. Indeed, much work in the artificial intelligence and machine learning

computing community have sought to make these models interpretable. In this thesis, we focus on

explanations for the inference process rather than the learning or training process.

Some learned models are trivial to explain (e.g., decision trees that can be transformed into rules)

by just traversing through the program branches to provide reasoning traces. Some learned models,

in particular additive classifiers (e.g., Naïve Bayes, linear Support Vector Machine (SVM), and Linear

Regression), are less intuitive, but still relatively easy to make interpretable (e.g., Mineset [Brunk et

al. 1997], Nomograms [Mozina et al., 2004]; ExplainD [Poulin et al., 2006]). These explanation

methods present visualizations to users and indicate decision processes based on weights placed

on different features. There also remain several “black-box” classifiers (such as Artificial Neural

Networks) that are not directly interpretable. One way to try to make them reasonably

interpretable is by using case-base reasoning to provide an alternative explanation [Nugent and

Cunningham, 2005], and another way is to extract rules from them [Núñez, Angulo, and Català,

2002; Tickle et al., 1998].

28 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

2.3 SUMMARY

In summary, much research investigating the provision of explanations in intelligent systems have

demonstrated a positive impact on user understanding and trust. Research in the domain of

context-aware computing is also nascent and has shown some promise, but more work is required

to provide stronger support for intelligibility and gain better insight about how intelligibility

impacts users. This thesis proposes to deepen this research, and provide concrete contributions

towards providing intelligibility in context-aware applications. In the Chapter 3, we describe how

the nature of context-aware applications pose research questions for providing intelligibility, and

describe the taxonomy of explanations we investigated to answer these questions in the thesis.

29

3 EXPLANATION TYPES FOR

INTELLIGIBILITY

In Chapter 2, we reviewed the different types of explanations provided in various intelligent

systems. In this chapter, we introduce the research questions that have driven our investigation

and then describe the taxonomy of intelligibility explanation types we have developed to make

context-aware applications intelligible.

As mentioned in the earlier section, context-aware applications use implicit sensing, and intelligent

inference to determine the user's context so as to perform appropriate actions. For Ubicomp

systems, context-aware applications have been primarily developed to support everyday activities,

such as tracking the user's physical activity to monitor her exercise, recognizing activity in the

home to provide timely medical assistance, determining her availability to others, providing

recommendations based on where she is and what she is doing, reminding her to pick up the milk

when she is located at the grocery store, etc. They sense implicitly to minimize obtrusiveness and

interruption to the user; they automatically sense the situation rather than requiring the user to

manually tell them what is happening. Context-aware applications are increasingly using

sophisticated inference mechanisms due to the growing complexity of contexts they need to

understand, particularly for activity recognition. For inference, they use big rule sets and machine

learning algorithms to handle diverse situations, and to be more robust to exceptional cases. All

these improve the accuracy in properly and calmly understanding the user's context.

Unfortunately, these two factors of implicit sensing and intelligent inference also make context-

aware applications difficult for end-users to understand. This is particularly problematic when the

applications behave inappropriately or unexpectedly. In such cases, context-aware applications no

longer remain invisible to the user's experience; instead, they become a puzzle. The users become

frustrated if they cannot understand what has happened and why the application behaved

30 CHAPTER 3 | EXPLANATION TYPES FOR INTELLIGIBILITY

unexpectedly. Eventually, this lack of understanding would lead to a loss in trust in the system's

inference and behavior, and the eventual abandonment of them. Without a proper understanding of

how context-aware applications work, users may also not be able to effectively control them to

improve their performance for subsequent situations. Therefore, it is crucial for context-aware

applications to be intelligible, so that they can explain what they sense and how they are inferring

about the users' contexts.

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY

Starting with a broad idea of intelligibility from Bellotti and Edwards [2001], we defined

intelligibility for a context-aware application as the ability to answer or explain questions that users

could ask. Given the implicit actions that context-aware applications take, end-users may not know

what the application is doing, let alone assess whether it has performed appropriately. Hence, it is

important for applications to make their action state explicit and provide feedback of what they are

doing. This is supported by providing an explanation or answer to the question:

1. What is the current value of the context?

Continuing with the user-centric perspective of answering intuitive questions, we draw from the

question-answering approach of the Whyline [Ko and Myers, 2004, 2009], with just why and why

not questions. One can easily imagine a confused, exasperated, or inquisitive user asking the

following questions:

2. Why is this context the current value X?

3. Why Not: why isn’t this context value Y, instead?

Why asks what factors caused or influenced the inference outcome, and Why Not asks why an

alternative inference was not made. In a similar manner as the Whyline, we answer these questions

by providing mechanistic explanations that specifically describe the inference over the instance the

end-user is asking about. Note that we do not enforce a particular structure of explanations to

answer these questions. They could be answered with rule traces (line of reasoning) or some other

structures. We do not explain these in terms of design rationale or purpose, which relate to the

underlying assumptions, concepts, or objectives driving how the application behaves.

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY 31

3
.1

 R
E

SE
A

R
C

H
 Q

u
estio

n
s fo

r In
telligib

ility
 3

1

As an extension of Why and Why Not questions, end-users may want to ask questions relating to

the general rules or model under which the application makes inferences. This can allow the users

to generalize their understanding of how the application works to better predict future behavior.

Specifically, we provide explanations for the questions:

4. How To: when would this context take value Y?

5. What if the conditions are different, what would this context be?

How To explanations are a generalization of Why explanations, but they do not specifically target

any instance. In terms of rule traces, this explanation type can be expressed by listing all traces that

achieve the desired inference. What If explanations support the feedforward type of feedback,

where end-users can investigate what the application will do in a future or hypothetical scenario.

We began our investigation of providing intelligibility in context-aware applications with this initial

set of five explanation types. This thesis aims to show that intelligibility can improve user

understanding and trust of context-aware applications. We would especially like to show this with

the scope of intelligibility that we have defined based on multiple question types. Specifically, our

first investigation sought to answer the research question:

RQ1. DOES INTELLIGIBILITY HELP USERS IMPROVE THEIR UNDERSTANDING AND TRUST OF CONTEXT-

AWARE INTELLIGENT SYSTEMS?

Even though this has been proven true with narrower forms of intelligibility (transparency,

scrutability, etc.) in related work, we explored how supporting the various question types

independently affect user understanding and trust in context-aware applications. Our work,

presented in Chapter 4, shows that providing some explanation types (Why and Why Not) are more

effective than others in improving user understanding and trust.

These successful results from our first study showed that providing intelligibility is a promising

avenue for research. Next, we sought to carefully explore the scope of questions that users would

ask of context-aware applications. Specifically:

RQ2. WHAT ARE THE INTELLIGIBILITY NEEDS OF END-USERS IN CONTEXT-AWARE APPLICATIONS?

Answering this question will help to ensure that the intelligibility we aim to provide will be relevant

to users and can better satisfy their informational needs. In work presented in Chapter 5, we

32 CHAPTER 3 | EXPLANATION TYPES FOR INTELLIGIBILITY

conducted user-centered, empirical research to elicit what information users wanted to know of

context-aware applications, when the applications behaved under various situations. We identified

more explanation types, and expanded our taxonomy of explanation types.

To improve end-users awareness of what the application knows, much previous work in adaptive

or context-aware applications have investigated the principle of making the application

transparent. One way to support transparency is to fully reveal the internal input state of the

application. This answers the question:

6. Inputs: what factors and values affect this context?

One could distinguish between naming the input sources, and the value taken by each input at the

time of interest. Users are also interested in the range and diversity of actions or responses that

context-aware applications. Considering an application model as an input-output functional model,

this supports the explanation for the question:

7. Outputs: what other values can this context take?

Given the ambiguity and uncertainty in sensing and inference, context-aware applications are not

necessarily deterministic in their decision logic. Hence, users are also interested in asking:

8. Certainty: how confident is inference of this value?

With increased knowledge and understanding of the applications, users will also want to be able to

reconfigure or control the application to improve its behavior. This asks the question:

9. Control: how can I control the application to improve it?

Finally, we determined some circumstances in which users asked for information additional to

what the context-aware application may model for its function. For example, wanting to see a video

capture of the room where an elderly family member was detected to have fallen. Providing this

extra information helps answer the question:

10. Situation: what else is happening in this situation (not about the application, but about the

circumstance)?

Similarly, users want to know if the application has taken other actions meanwhile:

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY 33

3
.1

 R
E

SE
A

R
C

H
 Q

u
estio

n
s fo

r In
telligib

ility
 3

3

11. What Else: what else did the application do?

With the study described in Chapter 5, we identified which explanation types users ask of context-

aware applications. However, it remains difficult for application developers to implement

intelligibility in context-aware applications, especially with such a wide range of explanation types.

This brings us to the next research question:

RQ3. HOW CAN WE SUPPORT THE IMPLEMENTATION OF INTELLIGIBILITY IN CONTEXT-AWARE

APPLICATIONS?

We chose to provide toolkit support for developers to easily add intelligibility to their context-

aware applications (Chapter 6). We developed the Intelligibility Toolkit that provides extensible

components to support the automatic generation of explanations, and mechanisms to process the

explanation information into simpler forms that end-users may easily interpret. However, this

technical contribution did not provide final solutions to how the explanations should be presented

to end-users. This leaves unaddressed the next research question:

RQ4. HOW CAN WE DESIGN INTELLIGIBILITY FOR CONTEXT-AWARE APPLICATION TO BE USABLE FOR END-

USERS?

We answer this question with a think-aloud usability study described in Chapter 7, where we

designed Laκsa, a complex context-aware application that uses multiple input contexts and various

rules and machine learning classifiers. This application was implemented as an interactive

prototype for participants to engage with. In this study, we explored several design principles for

intelligibility, and evaluated how users interpret explanations from an intelligible context-aware

application. Our findings provide insights and design recommendations for providing usable

intelligibility in context-aware applications.

We considered context-aware applications with inference models that infer a certainty distribution

over multiple Outcomes. Instead of a single What value, there can be a non-zero Certainty of

inferring each of the possible Output values. We support and later manifest this as an aggregation of

explanations Outputs + Certainties. An alternative point of view is that the What explanation is

extended to include a range of output values.

12. Outputs + Certainties: how confident is inference of all possible values?

34 CHAPTER 3 | EXPLANATION TYPES FOR INTELLIGIBILITY

As we investigate providing explanations with a real-world interactive prototype, new explanation

types become more relevant and important, namely:

13. When: when was the context inferred as this value?

14. History: what was the inference at an earlier time, T? Why did it make that inference at

time T? Etc.

Historical explanations can help to provide users with a confirmation of what they and the

application have done in the past. Furthermore, explanations about history include not just the

inferred value at that time, but also any other event-dependent explanations about the event.

As context-aware applications begin to use esoteric sensors and features for inference, we also

include textual descriptive information to help end-users to learn the terminology used by the

application and key concepts.

15. Description: what is the meaning of the context terms and values?

Description explanations can also be used to justify the behavior of the application by describing the

implications of various context values, and describe the rationale for the application to consider

various features or inference mechanisms.

At this stage, we investigated how to provide intelligibility through gathering requirements,

providing technical support, and recommending design principles. This allows developers and

designers to more easily and carefully implement, provide, and present intelligibility in context-

aware applications. This also enables us to explore our hypotheses on the impact of intelligibility

with more realistic intelligible context-aware applications. Logically, we next address research

questions relevant to evaluation in light of realistic issues. One concern is that context-aware

applications are not always certain of what they infer, and providing intelligibility may not be

helpful when they are uncertain. This could be because users learn about the applications’

weaknesses. This brings up the research question:

RQ5. WHEN IS INTELLIGIBILITY HELPFUL AND HARMFUL FOR CONTEXT-AWARE APPLICATIONS WITH

DIFFERENT CERTAINTIES?

We conducted a large online controlled study with a between-subjects experiment design to

investigate the interaction effect of providing intelligibility and of application certainty on user

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES 35

3
.2

 T
A

X
O

N
O

M
Y o

f In
telligib

ility E
xp

lan
atio

n
 T

yp
es

 3
5

impression of two context-aware applications. This is described in Chapter 8. We found that above

a threshold of about 80% certainty, providing intelligibility improves user impression of the

application performance. However, below that threshold, providing intelligibility harms user

impression because it reveals the weaknesses of the application.

This result deepens our earlier findings in Chapter 4, and considers nuances in the impact of

intelligibility in context-aware applications. At this point, much of our work on evaluating

intelligibility has focused on questionnaire studies and ‘paper’ prototypes of realistic albeit

fictitious context-aware applications. With the Laκsa prototype (Chapter 7), we sought to increase

realism in investigating intelligibility with an interactive prototype. However, intelligibility was

shown “always on” to participants, so they were biased to look at the explanations. This brings

forward the question:

RQ6. EVEN IF INTELLIGIBILITY CAN IMPROVE USER UNDERSTANDING AND TRUST, WILL USERS WANT TO

USE IT, AND, IF SO, HOW MUCH?

We address this question with the study described in Chapter 9. Using a quasi-field experiment

with four scenarios, we let participants freely use a fully interactive intelligible context-aware

application on a mobile phone. We logged their usage of the intelligibility features, and interviewed

participants to evaluate their understanding of the application behavior. We found that participants

do use intelligibility without prompting, and that more extensive and deeper usage helps them to

better understand the application behavior.

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES

We have introduced several explanation types in the previous section, and in our empirical study in

Chapter 5. Here, we summarize these into a framework of explanation types for intelligible context-

aware applications.

3
6

 C
H

A
P

T
E

R
 3

 | E
X

P
L

A
N

A
T

IO
N

 T
Y

P
E

S F
O

R
 IN

T
E

L
L

IG
IB

IL
IT

Y

Explanation Type Question Explanation

What

(Output
Value)

Top Value What is the inferred value? Shows the value of the inferred output.

Outputs What are the inferred values? Lists multiple other likely alternative values.

What Else What else (other actions) did the application do? Informs what other actions the application is simultaneously
doing.

Certainty Top What is the confidence of inferring the current value X? Shows the Certainty of inference.

Certainties What is the confidence of inferring all possible values? May include certainties of inferring other values.

When When was value X inferred? Indicates the time that the inference was made.

Why Why was value X inferred? With the Intelligibility Toolkit, this explanation can be provided as a
Rule Trace or as Weights of Evidence.

Describes the triggered rule(s) or weights of evidence for the
inference.

Why Not Why was value Y not inferred? Same format as Why.

Describes the un-triggered rules or difference in weights of
evidence for why an alternative value Y was not inferred.

Input Values What are the factor values / What is the input state? Describes the values of all input factors.

Situation What else is happening with the situation?

What is the ground truth?

Provides a description or playback of the recorded ground truth to
convey a richer picture or experience of the situation.

E.g., showing a video of the sensed scene, providing an audio
recording of the sound recognition source.

History* *Provides the same range of explanations, but for a historical event or inference at a specific time in the past.

Table 3.1. Dynamic instance-based explanation types explaining the inference of a specific event. These explanations will differ

for every instance the application acts.

3
.2

 T
A

X
O

N
O

M
Y o

f In
telligib

ility E
xp

lan
atio

n
 T

yp
es

 3
7

3
.2

 T
A

X
O

N
O

M
Y

 O
F

 IN
T

E
L

L
IG

IB
IL

IT
Y

 E
X

P
L

A
N

A
T

IO
N

 T
Y

P
E

S 3
7

Explanation Type Question Explanation

What If What will be the inferred value, if the input values are
W?

Provides a hypothetical What or What Else answer given user-
queried input values.

Requires user input to specify / constrain some input values.

How To How can I get the application to infer Y? Similar format as Why, but

Explains in terms of an alternative output value Y, instead of X.

How To If How can I get the application to infer Y, given a subset
of input values W?

Similar format as How To, but

Requires user input to specify / constrain some input values.

Control Parameter
Values

What parameters can I change to control the
application behavior?

Describes how to control and adjust parameters or attributes to
change the application behavior (e.g., in a manner exposed in [Dey
and Newberger, 2009]).

We do not cover this explanation type in this thesis

Rules / Model What rules or settings can I change? Describes how to add/edit rules or the model.

We do not cover this explanation type in this thesis.

Table 3.2. Dynamic general explanation types explaining the inference model of the context-aware application.

3
8

 C
H

A
P

T
E

R
 3

 | E
X

P
L

A
N

A
T

IO
N

 T
Y

P
E

S F
O

R
 IN

T
E

L
L

IG
IB

IL
IT

Y

Explanation Type Question Explanation

Inputs Factors What factors / sources influence this inference? Lists all input factors / sources for the application.

Outputs (Options) What are the possible output values for this
inference?

Lists all possible values or actions that the application may
produce or perform.

Description Terminology What does this term mean? Provides a textual description of a term or concept.

Justification What is the implication of this value? Provides a textual description of the implication of a context value.

E.g., a high “Periods of Silence” in the sensed sound suggests
talking noise because speech has more relative silence than voices.

Rationale What is the rationale for this inference? Provides a textual description of the rationale of a process, rule, or
inference mechanism.

E.g., the application considers sound activity when inferring
availability because you may be in an impromptu meeting, and it
detects your talking, even though your calendar is open (no events
scheduled).

Table 3.3. Static general explanation types explaining the inference model of the context-aware application. For a static (fixed)

model, these explanations will always be the same.

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES 39

3
.2

 T
A

X
O

N
O

M
Y o

f In
telligib

ility E
xp

lan
atio

n
 T

yp
es

 3
9

3
.2

 T
A

X
O

N
O

M
Y o

f In
telligib

ility E
xp

lan
atio

n
 T

yp
es

 3
9

In the next chapters (4 to 9), we describe in detail the pieces of work that have been completed for

this thesis.

41

4 INVESTIGATING THE

INTELLIGIBILITY OF QUESTION

TYPES

This chapter is an extension of the work presented in:

Lim, B. Y., Dey, A. K., and Avrahami, D. (2009). Why and Why Not Explanations Improve the

Intelligibility of Context-Aware Intelligent Systems. In Proceedings of the 27th international

Conference on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09, 2009).

CHI '09. ACM, New York, NY, 2119-2128.

This publication was a best paper honorable mention for a CHI '09.

ABSTRACT. Context-aware intelligent systems employ implicit inputs, and make decisions based

on complex rules and machine learning models that are rarely clear to users. Such lack of system

intelligibility can lead to loss of user trust, satisfaction and acceptance of these systems. However,

automatically providing explanations about a system’s decision process can help mitigate this

problem. In this chapter, we present results from a controlled study with over 200 participants in

which the effectiveness of different types of explanations was examined. Participants were shown

examples of a system’s operation along with various automatically generated explanations, and

then tested on their understanding of the system. We show, for example, that explanations

describing why the system behaved a certain way resulted in better understanding and stronger

feelings of trust. Explanations describing why the system did not behave a certain way, resulted in

lower understanding yet adequate performance. We discuss implications for the use of our findings

in real-world context-aware applications.

42 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

4.1 INTRODUCTION

This chapter describes an investigation of a number of mechanisms for improving system

intelligibility performed using several controlled online lab experiments. To investigate these

intelligibility factors and their effects, we defined a model-based system representing a canonical

intelligent system underlying a context-aware application, and an interface with which users could

learn how the application works. We recruited 211 online participants to interact with our system,

where each one received a different type of explanation of the system behavior. Our findings show

that explaining why a system behaved a certain way, and explaining why a system did not behave in

a different way provided most benefit in terms of objective understanding, and feelings of trust and

understanding compared to other explanation types.

In this chapter, we first define a suite of intelligibility explanations derived from questions users

may ask of a context-aware system and that can be automatically generated. We then describe an

online lab study setup we developed to compare the effectiveness of these explanation types in a

quick and scalable manner. Next we describe the experimental setup used to expose participants to

our system with different types of intelligibility and the metrics we used to measure understanding,

and users’ perception of trust, and understanding. We present two experiments in which we

investigated these factors, elaborating on the results and implications. We end with a discussion of

all of our results and plans for future work.

4.2 INTELLIGIBILITY

Context-aware systems can confuse users in a number of ways. For example, such systems may not

have familiar interfaces, and users may not understand or know what the system is doing or did.

Furthermore, given that such systems are often based on a complex set of rules or machine learning

models, users may not understand why the system acted the way it did. Similarly, a user may not

understand why the system did not behave in a certain way if this alternative behavior was

expected. Thus, our focus in the work presented here is on explanations that can be regarded as

reasoning traces.

While a reasoning trace typically addresses the question of why and how the application did

something, there are several other questions that end-users of novel systems may ask. We chose to

following initial set of intuitive questions (adapted from [Dourish, Adler, and Smith, 1996]):

4.2 INTELLIGIBILITY 43

4
.2

 IN
T

E
L

L
IG

IB
IL

IT
Y

 4
3

4
.2

 IN
T

E
L

L
IG

IB
IL

IT
Y

 4
3

1. What: What did the system do?

2. Why: Why did the system do W?

3. Why Not: Why did the system not do X?

4. What If: What would the system do if Y happens?

5. How To: How can I get the system to do Z, given the current context?

Throughout this chapter we will refer to these as our five intelligibility question types, and the

explanation addressing each of them as an explanation type.

Norman described two gulfs separating users’ goals and information about system state [Norman,

1988]. Explanations that answer questions What, Why, and Why Not address the gulf of evaluation

(the separation between the perceived functionality of the system and the user’s intentions and

expectations), while explanations answering questions What If and How To address the gulf of

execution (the separation between what can be done with the system and the user’s perception of

that). With a partial conception of how a system works, users may want to know what would

happen if there were some changes to the current inputs or conditions (What If). Similarly, given

certain conditions or contexts, users may want to know what would have to change to achieve a

desired outcome (How To).

This chapter deals with providing and comparing the value of explanations that address four of

these intelligibility questions to investigate which of these explanations benefit users more. We

label these explanation types: Why, Why Not, What If, and How To. Since the system we developed

to evaluate the value of explanations, already explicitly shows the inputs and output of the system

(see next Section on Intelligibility Testing Infrastructure), we did not investigate the What

explanation.

4.2.1 HYPOTHESES

We hypothesize that different types of explanations would result in changes in users’ user

experience: understanding of the system and perceptions of trust and understanding of the system.

We will now present our hypotheses about each of these intelligibility questions.

Why explanations will support users in tracing the causes of system behavior and should lead to a

better understanding of this behavior. So, we expect:

H1: Why explanations will improve user experience over having no explanations (None).

44 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Why Not explanations should have similar benefits to Why explanations; however, users’ ability to

apply Why Not explanations may not be as straightforward. There may be multiple reasons why a

certain outcome did not happen; while a why explanation may be a single reasoning trace (or at

least a small number of possible traces), a why not explanation is likely to contain multiple traces.

Given this complexity, users will require more cognitive effort to understand how to apply the

knowledge, and may do so poorly. As such, we expect:

H2: Why Not explanations will (a) improve user experience over having no explanations (None),

but (b) will not perform as well as Why explanations.

Explanations for How To and What If questions would have to be interactive and dynamic, as they

depend on example scenarios that users define themselves. Receiving these explanations should be

better than receiving none at all. However, given that novice end-users are unlikely to be familiar

with a novel system, they may choose poor examples to learn from, and learn less effectively than

the Why explanations. So we expect:

H3: How To or What If explanations will (a) improve user experience over having no explanations

(None), but (b) will not perform as well as Why explanations.

 Hypotheses Experiment 1 Experiment 2

H1 None < Why None < Why None < Why

H2a None < Why Not None < Why Not None < Why Not

H2b Why Not < Why None ≈ Why Not None ≤ Why Not

H3a None < (How To, What If) None ≈ (How To, What If)

H3b (How To, What If) < Why (How To, What If) < Why

Table 4.1. Summary of hypotheses and results regarding the effect of explanation type on

user experience (understanding and trust). ‘≈’ means no significant difference (p=n.s.); ‘≤’

means we hypothesize either a lower user experience or no difference.

To test these hypotheses (summarized in Table 4.1), we created a test-bed that allows simulating

different types of intelligent systems and testing different explanation types. We describe this

testing infrastructure next.

4.3 INTELLIGIBILITY TESTING PLATFORM 45

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y testin

g P
latfo

rm
 4

5

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y testin

g P
latfo

rm
 4

5

4.3 INTELLIGIBILITY TESTING PLATFORM

We developed a generalizable web interface that can be applied to various application domains to

study the effect of the various mechanisms for providing intelligibility. Users interact with a

schematic, functional intelligible system that could underlie a context-aware application: it accepts

a set of inputs (e.g. Temperature, Humidity), and uses a model (for example, a decision-tree), to

produce a single output (e.g., Rain Likely, or Rain Unlikely). Users are shown different instances of

inputs and outputs and can be given various forms of explanations (or no explanations) depending

on what explanation type is being studied. To users who do not receive explanations, the system

appears as a black box (only inputs and the output are visible).

This infrastructure allows us to efficiently and rapidly investigate different intelligibility factors in a

controlled fashion and closely measure their effects; further, the online nature of the infrastructure

allowed us to collect data from over two hundred participants. The design also has the advantage of

being generalizable to a variety of different domains simply by relabeling its inputs and outputs to

represent scenarios for those domains.

4.3.1 TEST PLATFORM IMPLEMENTATION

The web interface was developed using the Google Web Toolkit [Google]. We leverage Amazon’s

Mechanical Turk infrastructure [Amazon] to recruit and manage participants and manage study

payments by embedding our study interface in the Mechanical Turk task interface. Users found our

study through the listings of Human Intelligence Tasks (HITs), and after accepting our HIT, they

participated in the study and interacted with the system.

The user encounters several examples of system inputs and output (see Figure 4.1). He first sees

the input values listed and has to click the “Execute” button so the system ‘generates’ the output.

When he is done studying the example, he clicks the “Next Example” button to move on. Depending

on the explanation condition the user is in, he may receive an explanation about the shown

example.

46 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.1. Screenshot of the interface for our intelligibility testing infrastructure.

We modeled our testing infrastructure on typical sensor-based context-aware systems that make

decisions based on the input values of multiple sensors. Many of these sensors produce numeric

values and the applications change their behaviors based on threshold values of the sensors. For

example, a physical activity recognition system could look at heart rate and walking pace. To keep

our experiments and the task reasonably simple for participants we restricted the system to three

input sensors that produce numeric values, we used inequality-based rules to define the output

value, and constrained the output to belonging to one of two classes. In Experiment 1, for example,

we defined two inequality rules that consider two inputs at a time (see Equation (4.1)). Since we

did not want the lack of domain knowledge (e.g., that the body temperature can rise from 36.8 to

38.3°C when weight lifting) to affect users’ understanding of the system, so the inputs use an

arbitrary scale of integer values: Body Temperature from 1 to 10, and Heart Rate and Pace from 1

to 5.

 (4.1)

Equation (4.1): Inequality-based rules for the physical activity domain.

4.3 INTELLIGIBILITY TESTING PLATFORM 47

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y testin

g P
latfo

rm
 4

7

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y testin

g P
latfo

rm
 4

7

Figure 4.2. Visualization of the learned decision tree model used in Experiment 1.

As machine learning algorithms are popular in context-aware applications, our system also uses

machine learning. Among the myriad of machine learning algorithms, decision trees and Naïve

Bayes lend themselves to be more explainable and transparent, while others are black-box

algorithms that are not readily interpretable (e.g., Support Vector Machines and Neural Networks)

[Nugent and Cunningham, 2005]. We chose to start our investigation using decision trees because

they are easier to explain, especially to end-users who may not understand the probabilistic

concepts that underlie Naïve Bayes algorithms. Using Weka’s [Hall et al., 2009] J48 implementation

of the C4.5 Decision-Tree algorithm [Quinlan, 1993], our system learns the inequality rules from the

complete dataset of inputs (250 instances from the permutations of all inputs) and outputs and

models a decision tree (see Figure 4.2) that is used to determine the output value.

4.3.2 DECISION TREE EXPLANATIONS

While the decision tree is able to classify the output value given input values, we had to extend it to

expose how the model is able to derive its output. The decision tree model lends itself nicely to

providing explanations to the four intelligibility question types. Table 4.2 describes how the

explanations were implemented.

Not
Exercising

Exercising

Body

Pace

Heart
Rate

Pace

Exercising
Not

Exercising

Not
Exercising

≤3 >3

≤5 >5

≤2 >2

≤1 >1

Temperature

48 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Why: Traverse the decision tree to trace a path of decision boundaries and values that match the instance
being looked at. Return a list of inequalities that satisfies the decision trace of the instance (e.g., “Output
classified as Not Exercising, because Body Temperature≤5 and Pace ≤3”; see Figure 2).

Why Not: Traverse the whole tree initially to store in memory all the traces that can be made. Walk the tree
to find the why-trace, and find differing boundary conditions on all other traces that return the alternative
output. A why-not trace would contain the boundary conditions that match the why trace and boundary
conditions where it is different (e.g., “Output not classified as Exercising, because Pace≤3, but not Body
Temperature>5”).

A full Why Not explanation will return the differences for each trace that produces the alternative output.
However, so as not to overwhelm the user, we use a heuristic to return the differences of just one why-not
trace, the one with the fewest differences from the why trace. Note that while this technique is suitable for
small trees, it is not scalable to large trees, and heuristics should be used to look at subsets of traces.

How To: Take user specified output value, and values of any inputs that were specified. Iterate through all
traces of the tree to find traces that end with the specified output value and has branches that satisfy the
specified input values. If any trace is found, it identifies the satisfying boundary conditions for the
unspecified inputs and returns them. Note that if there is a trace, there will only be one, since an instance
can only satisfy one trace in the tree. If there are no boundary conditions for the unspecified inputs, then
these inputs can take any value. If no trace is found, then there are no values for the unspecified inputs,
given values of the specified inputs, to produce the desired output value.

What If: Take user’s inputs and puts it through the model to classify the output. Return the output value, but
since this is a simulation, do not take any action based on this output value.

Table 4.2. Algorithms for generating different types of intelligibility explanations from a

decision tree model.

4.4 METHOD

Given the different factors we wanted to investigate and the flexibility of our testing infrastructure,

we were able to independently test different intelligibility elements in a series of experiments. We

ran Experiment 1 to explore providing different explanation types (Why, Why Not, and the control

condition with no explanations). The system was presented in the context of the domain of activity

recognition of exercising as described above. However, due to participants’ prior knowledge of the

domain, our results were difficult to interpret. So, we decided to subsequently run experiments

with an abstract domain. Experiment 2 compares explanations provided to address each of the four

intelligibility question types (Why, Why Not, How To, and What If) individually to investigate which

are more effective in helping users gain an understanding of how our intelligent system works

compared to not having explanations (None).

4.4.1 STUDY PROCEDURE

Our study consists of four sections. The first section (Learning) allows participants to interact with

and learn how the system works. Two subsequent sections test the participants’ understanding of

4.4 METHOD 49

4
.4

 M
E

T
H

O
D

 4
9

4
.4

 M
E

T
H

O
D

 4
9

the system (Fill-in-the-Blanks Test and Reasoning Test), and a final section (Survey) that asks users

to explain how the system works (to evaluate the degree to which participants have learned about

the system’s logic) and to report their perceptions of the explanations and system in terms of

understandability, trust and usefulness.

4.4.1.1 LEARNING SECTION

In the Learning section, participants are shown 24 examples with inputs and output values (see

Figure 1). These examples were chosen from all possible input instances, to have an even

distributed over all branches in the decision tree, and they appear in the same order to all

participants. Examples were arranged in ascending order of Body Temperature, then of Heart Rate,

then of Pace. Participants have to spend at least 8 seconds per example (controlled by disabling the

Next Example button). Explanations are provided depending on the experimental condition. If

participants receive explanations, they will receive them automatically when executing each

example. It is important to note that explanations are only provided during the Learning section.

Participants are provided with a text box to make notes in, which persist throughout the Learning

section. At the end of the Learning section, users are told to spend some time studying their notes

as those are not available during the rest of the study.

4.4.1.2 FILL-IN-THE-BLANKS TEST SECTION

This section tests users on their ability to accurately specify a valid set of inputs or output; they are

given a single blank in one of the inputs or the output, and are given the rest of the inputs/output.

There are 15 test cases, three with blank Body Temperature, three with blank Heart Rate, four with

blank input Pace, and 5 with blank output. These test cases different from the earlier examples, and

are randomly ordered, but in the same order for all participants. On seeing each test case, users

have to fill in the missing input or output with a value that makes the test case correct. If an input is

missing, they should provide a value that causes the given output value to be produced; if the

output is missing, they provide a value that would be produced with the given input values. After

providing the missing value, they are also asked to provide a reason for their response. Participants

are not given any explanations during this test and, are not given the answer or told whether they

are correct after they finish.

50 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

4.4.1.3 REASONING TEST SECTION

This section shows users three complete examples, and, for each example, asked to give reasons

why the output was generated, and why the alternative output was not. These test case examples

are different from what users have encountered before, and are randomly ordered, but are in the

same order for all participants. To see if improved understanding can lead to improved trust, users

are also asked how much they trusted that the output of the system is correct for each example.

Participants are not given any explanations during the test and, are not given the answer after they

finish.

4.4.1.4 SURVEY SECTION

The final Survey section is used to collect self-report information from users. Users provide a more

detailed description of how they think the system works overall (i.e., an elicitation of their mental

models), and are asked 16 Likert-scale questions (see Table 4.4) to understand how users

perceived about using our system, including whether they trusted and understood the system and

explanations. The questions were randomly ordered to avoid order effects.

4.4.2 MEASURES

In order to see what types of intelligibility explanations would help users better understand the

system, and whether this improved understanding would lead to better task performance,

improved perception of the system, and improved trust in the system output, a number of measures

were collected.

Task performance was measured in terms of task completion time, and the Fill-in-the-Blanks Test

inputs and output answer correctness. Task completion time was measured with two metrics: total

learning time in the Learning section, and average time to complete each Fill-in-the-Blanks Test

question.

User understanding is measured by the correctness and detail of the reasons participants provide

when they give their answers (in the Fill-in-the-Blanks Test), explain examples (in the Reasoning

Test), or give an overall description of how the system works (mental model in the survey). The

reasons given for each answer in the Fill-in-the-Blanks Test were coded using a rubric (see Table

4.3) to determine how much the participant understands about how the system works. Reasons are

coded as Guess/Unintelligible if participants wrote they were guessing, did not write anything, or

wrote something not interpretable. Reasons are graded as Some Logic if participants provided

4.4 METHOD 51

4
.4

 M
E

T
H

O
D

 5
1

4
.4

 M
E

T
H

O
D

 5
1

some rules or probability statement or cited past experience (e.g., saying they saw something

similar before) that were not inequalities with fixed numeric boundaries. This includes cases such

as “Body Temperature>Heart Rate”. Reasons are coded as Inequality if participants specified an

inequality of at least one of the inputs with a fixed numeric boundary (e.g., Body Temperature>7).

Reasons are coded as Partially Correct if participants provided only one rule with the correct input,

boundary value, and relation. Reasons are coded as Fully Correct if participants get only all the

sufficient rules correct, and did not list any extra ones. Each reason was coded with only a single

grade (i.e., the highest appropriate grade).

Understanding Code Description

GUESS/UNINTELLIGIBLE No reason given, guessed, or reason incoherent

SOME LOGIC Some math/logic rules, probability, or citing past experience

INEQUALITY Correct Type of rules which are inequalities of inputs with fixed numbers

PARTIALLY CORRECT Some, but not all, of the correct rules, or extra ones

FULLY CORRECT All correct rules, with no extra unnecessary ones

Table 4.3. Grading rubric for coding free-form reasons given by participants. Mental Models

were coded using this same rubric.

There are two inequality rules (e.g., , and) for each test case or example, so

answer reasons for the Fill-in-the-Blanks Test have two components. We measure how many of

these components participants learn using three coding metrics that count (i) the number of inputs

the participant mentions as relevant in the reasons, (ii) the number of correct rules described, and

(iii) the number of extraneous rules mentioned (0 or 1).

The reasons for the Why and Why Not questions that participants provided in the Reasoning Test

were coded using a rubric similar to Table 4.3. We also recorded, on a five-point Likert-scale the

participant’s level of trust of the correctness of the outputs for each example in the Reasoning Test.

In the survey, we asked participants to describe their overall understanding of how the system

works. This mental model understanding is coded in a similar manner to why reasons, but not

applied to specific examples.

We did a factor analysis on the 16 Likert-scale questions of system and explanation perceptions in

the survey (see Table 4.4).

52 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Factor α Likert-scale Opinions (Strongly Disagree 1 to Strongly Agree 5)

Understood System .917 I understood the relationship between inputs and output

I understood how the system works

I found the system predictable

I found the system easy to understand

I believe I did well in the test section

Found System Confusing

(Negated)

.722 I found the system confusing

I found the system complicated

I found the system hard to remember

Liked System / Found it
useful

.648 I learned something new from interacting with this system

I liked interacting with the system

Explanations Difficult

(Negated)

.529 I found the explanations insufficient

I found the explanations confusing

I found the explanations too detailed

Explanations Useful

.816 I found the explanations appropriate

I found the explanations useful

Understood Explanations

N.A. I understood the explanations

Table 4.4. Likert-scale questions of perception grouped into six factors with Cronbach’s α

reliability computed. The former three factors are regarding the system, and the latter three

factors only apply to participants who viewed Intelligible versions of the system.

4.5 EXPERIMENT 1

Our first experiment focused on providing answers to hypotheses H1 and H2; whether Why

explanations would lead to improved user understanding, trust, perception, and performance more

than having no explanations, and H2 regarding providing Why Not explanations being better than

no explanations, but not as good as Why explanations. We chose the domain of activity recognition

of exercise, of which users would have a reasonable understanding. Mapping to the generalized

abstract system described earlier, the system takes on the role of a wearable device that can

measure the wearer’s Body Temperature, Heart Rate, and walking or running Pace, and classify

whether the wearer is exercising (Equation (4.1)). The first rule can be satisfied during strength

training (e.g., weight lifting) that does not require much walking about, but can raise body

temperature, while the second rule can be satisfied by running.

4.5 EXPERIMENT 1 53

4
.5

 E
X

P
E

R
IM

E
N

T 1
 5

3

4
.5

 E
X

P
E

R
IM

E
N

T 1
 5

3

Participants in the no explanation (None) condition did not receive any explanations, and could

only execute each example and move on. Participants in the Why condition receive Why

explanations automatically along with the output value when they execute each example by clicking

the “Execute” button. Participants in the Why Not condition receive a Why Not explanation in place

of a Why explanation.

4.5.1 PARTICIPANTS

53 participants were recruited, aged from 18 to 57 (M=29.8). There were 18 participants in the

None condition, 18 in the Why condition, and 17 in the Why Not condition. We removed from the

analysis any responses of participants who took fewer than 15 minutes (one participant in the

None condition) or longer than 50 minutes to complete the four sections. This was done to filter out

participants who just click through the steps without thinking, and to leave out participants who

may be distracted while performing the task and take too long. On average, participants took 34

minutes to complete the study. Participants were each given $3 for completing the study ($1 base

and a $2 bonus to motivate performance). A further $2 was offered to a few participants who

participated in interviews conducted soon (up to a few days) after completing the task.

4.5.2 RESULTS

To analyze participants’ ability to apply their understanding, the number of correct answers per

participant was summed and a Tukey HSD pair-wise test was performed. The number of correct

answers was the dependent measure. The analysis showed significant differences in accuracy

between explanation types (F[2,84]=8.85, p<.001; see Figure 4.3). To analyze participants’ ability to

formalize their understanding, their reasons were coded using the coding scheme in Table 4.3 and

dummy variables were generated indicating: Inequality or better (0 or 1), Partially or Fully Correct

(0 or 1), and Fully Correct (0 or 1). The analyses were done with the reason coding as the

dependent measure and with condition as a fixed effect. Participants were modeled as a random

effect and nested within condition. A Tukey HSD pairwise test of the occurrences of each coded

score shows that providing explanations leads to more correct answers than not providing any

(contrast of None with Why and Why Not: F[1,50]=15.1, p<.001). However, there was no significant

difference in the number of correct answers between Why and Why Not explanation types.

54 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.3. Participants receiving explanations (in the Learning section) answered

significantly more questions correctly in the Fill-in-the-Blanks section.

Figure 4.4. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the

Reasoning Test section.

Using the grading coding scheme in Table 4.3 on the Why reasons provided in the Fill-in-the-Blanks

Test, we found that participants in the Why and Why Not conditions were able to produce more

Partially Correct reasons compared to those in the None condition (F[1,50]=27.4, p<.001) (see

Figure 4.4). Participants in the Why condition produced more Fully Correct reasons compared to

None and Why Not (F[1,50]=10.8, p<.002). There were no significant differences between Why and

Why Not. A similar pattern was found in the Reasoning Test section Participants in the Why

condition had a higher level of trust than those in None (F[1,49]=8.98, p<.005), while those in the

Why Not condition did not. The survey measures on overall mental model or perceptions of the

system and explanations did not reveal significant differences.

4.5.3 DISCUSSION AND IMPLICATIONS

The generally poor trust in the system could be due to occasional examples that follow the system

rules, but may not be ‘natural’ (e.g., high Body Temperature and low pace predicted as “Not

0

25

50

75

100

None Why Not Why

% Correct Answers

0

25

50

75

100

None Why Not Why

% Responses with Correct Answer Reasons

Inequality

Partially Correct

Fully Correct

4.6 EXPERIMENT 2 55

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

5

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

5

Exercising”). The answer and reason results indicated that providing explanations lead to better

understanding and trust of the system with less disagreement about the system output. However, in

their provided why reasons, several participants alluded to the domain of physical activity and

physiology to explain how the inputs (Body Temperature, Heart Rate, and Pace) should relate to

whether the device wearer was “Exercising” (e.g., “moving & high [body temperature], looks like

running so I upped the [heart rate]”). Furthermore, most responses specified the inputs as “high” or

“low” rather than specifying numeric boundaries (e.g., “heart rate is low, so must be a high pace

along with high body temperature to predict exercising”). This suggests that having prior knowledge

would lessen participants’ effort to be precise about their understanding. To mitigate the effects of

prior knowledge, and to support more generalizability to other domains, we decided to anonymize

the inputs and outputs with an abstract system.

4.6 EXPERIMENT 2

Our second experiment focused on comparing the effectiveness of different explanations types for

each of the 4 intelligibility questions. Using the explanation algorithms described in Table 1, we can

isolate these explanations for each condition.

4.6.1 METHOD

This experiment followed the procedure of Experiment 1. For the None, Why, and Why Not

conditions, participants see the same interface as in Experiment 1, but with the inputs obfuscated

as A, B, and C, and the output values relabeled to a and b.

Figure 4.5. What If explanation facility. Participants would get to freely enter values for the

inputs A, B, and C, and get the system to simulate what the output would be.

56 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.6. Participants in the How To condition view this facility. By specifying two of the

input values and an output value, they can inquire the system to indicate possible values of

the remaining input.

Participants in the What If condition receive a What If interaction facility (see Figure 4.5) instead of

an explanation to let them see the output given their choice of inputs. Participants in the How To

condition received an interactive facility (see Figure 4.6) to determine how to get the system to

produce a chosen output value. To control for the number of examples encountered, participants in

the What If and How To conditions only get 12 complete examples (the even-numbered examples of

other conditions), and can invoke their respective intelligibility facilities 12 times to see a total of

24 examples (similar to the other conditions). For each condition, the explanations or explanation

facilities will always appear as each example is executed.

4.6.2 PARTICIPANTS

158 participants were recruited, aged from 18 to 72 (M=31.9). There were 26-37 participants in

each of the 5 conditions: None (31); Why (30); Why Not (31); How To (29); What If (37). On

average, participants took 33 minutes to complete the study (similar to Experiment 1, they were

required to complete the study within 15 to 50 minutes). Compensation was identical to

Experiment 1.

4.6.3 RESULTS

We analyzed the results by using the Tukey HSD pairwise test, looking for differences between

groups for our previously described metrics. Compared to participants in the None, What If and

How To conditions, participants in the Why and Why Not conditions had more correct answers in

4.6 EXPERIMENT 2 57

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

7

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

7

the Fill-in-the-Blanks tests, provided better reasons, and reported having a better understanding of

the system. Participants in the Why and Why Not conditions had an accuracy of 80.0% and 74.2%,

respectively, compared to 61.7% for the None condition (F[1,152]=51.6, p<.001; see Figure 4.7).

More of their answer reasons were coded as at least Inequality type rules (Inequality:

F[1,153]=198, p<.001), Partially Correct (F[1,153]=195, p<.001) and Fully Correct (F[1,153]=108,

p<.001). Finally, the self-reports of understanding for Why and Why Not were 3.14 and 2.79,

respectively (see Figure 4.10a).

Participants in the Why condition further distinguished themselves from Why Not by giving more

Fully Correct reasons (contrast of Why with Why Not: F[1,153]=23.2, p<.001), and trusting the

system output more (contrast of Why with None: F[1,153]=8.26, p<.001 vs. contrast of Why Not

with None: p=n.s.) with means of 3.26, 3.0 and 2.46 for Why, Why Not and None, respectively (see

Figure 4.10b). However, these participants also took the longest to answer each Fill-in-the-Blanks

test case (M=26.3 seconds, compared to M=22.0 and M=17.0 for Why Not and None, respectively)

(contrast of Why with None: F[1,145]=9.32, p<.003 vs. contrast of Why Not with None: p=n.s.).

Surprisingly, participants in the Why Not condition were not significantly better at providing Why

Not reasons than Why reasons. While participants in the What If condition were indistinguishable

from those in the None condition across all of our metrics, we did find that participants in the How

To condition were able to understand the types of rules used in the system better than participants

in the None condition (answer reasons coded as Inequality or better: F[1,153]=15.6, p<.001).

To identify why participants in the Why Not condition understood less about the rules than Why,

we coded the quality of answer reasons on the number of inputs and rules mentioned. Participants

in the Why condition provided more correct rules (M=1.19 vs. M=0.79; F[1,59]=6.16, p<.02) while

those in the Why condition provided fewer extraneous rules (M=0.11 vs. M=0.23; F[1,59]=8.276,

p<.006).

58 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.7. Percent of correct answers in the Fill-in-the-Blanks test section, by condition.

Different colors indicate statistically significant differences.

Figure 4.8. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the

Fill-in-the-Blanks Test section for each condition.

Figure 4.9. Overall understanding of the system was similar to the understanding in-situ of

individual examples, but responses were less precise (fewer correct descriptions).

0

25

50

75

100

None What If How To Why Not Why

% Correct Answers

0

25

50

75

100

None What If How To Why Not Why

% Responses with Correct Answer Reasons

Inequality

Partially Correct

Fully Correct

0

25

50

75

100

None What If How To Why Not Why

% Participants with Correct Mental Model Score

Inequality

Partially Correct

Fully Correct

4.6 EXPERIMENT 2 59

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

9

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

9

(a)

(b)

Figure 4.10. Self-reports of (a) understanding and (b) trust, by condition. Different colors

indicate significant differences.

4.6.4 DISCUSSION AND IMPLICATIONS

The results in Experiment 2 validate those in Experiment 1 with a more generalized abstract

domain, while not suffering from confounds due to prior domain knowledge. The Why and Why Not

explanations improved participants’ understanding, increased their trust in the system, and their

task performance. Examining the user reasons, we found that automatically generated Why

explanations allowed users to more precisely understand how the system functions for individual

instances compared to Why Not explanations. This is in spite of the Why Not explanations being

logically equivalent to Why explanations since flipping the not’s in the former can derive the latter.

Moreover, we found that the Why Not participants tended to provide fewer correct rules (more

participants could only provide one correct rule instead of two) for the answer reason, or provide

extraneous inputs and rules that the system did not consider for the respective test cases, as

compared to the Why participants. These indicate that Why Not participants tended to learn only

part of the reasoning trace, and did not associate the two rules together, but treated them

separately. This failure in rule conjunction could be due to the inclusion of negative wording (i.e.

“but” and “not”) in the Why Not explanation. The mental effort to understand the Why Not

0

1

2

3

4

None What If How To Why Not Why

Understood System
Fully Agree

Agree

Neutral

Disagree

Fully Disagree

0

1

2

3

4

None What If How To Why Not Why

Trust of System Output

Fully Agree

Agree

Neutral

Disagree

Fully Disagree

60 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

explanation and create such a rule conjunction is certainly more than those in the Why condition

had to expend, which could explain the differences we observed.

Neither the How To nor What If explanations showed much benefit over not having explanations.

Some participants expressed their difficulty in using these explanation types, e.g., “I really don’t

think I used it cause I did not understand it”; “The first few [times, I did] not even realize what the

facility was for.” Participants receiving What If explanations did not optimize their selection of

examples, with some users even selecting input values out of range (e.g., A=100). Given the abstract

and mathematical nature of the experimental setup, without any reasoning trace (unlike Why, Why

Not, How To), almost none of these participants proposed inequality rules as reasons, similar to

those in the None condition. However, as with the effect of domain knowledge (in Experiment 1),

participants who did not receive reasoning traces did consider the inequality rules, but just not

correctly (see Figure 4.5).

Our results suggest that developers should provide Why explanations as the primary form of

explanation and Why Not as a secondary form, if provided. Our results may suggest the

ineffectiveness of How To and What If explanations, but these explanation types may be more

useful for other types of tasks, particularly those relating to figuring out how to execute certain

system functionality, rather than interpreting or evaluating.

4.7 GENERAL DISCUSSION

We now discuss the findings of our two experiments and their implications for real world context-

aware systems.

4.7.1 IMPACT OF PRIOR KNOWLEDGE

We found in Experiment 1 that participants formed less accurate and precise mental models of the

system, compared to those in Experiment 2. This could be due to participants applying their prior

knowledge of exercising to understanding how the system works and not paying careful attention

to the explanations, as evidenced by the reasons they provided. This persistence of mental model

was also shown in [Tullio et al., 2007] where participants received explanations, over time, of how

an interruptibility system worked. As many real context-aware applications are based on common

everyday activities, users may have strong prior knowledge of the domains although weak

understanding of the applications, and may also not diligently learn from the provided

4.7 GENERAL DISCUSSION 61

4
.7

 G
E

N
E

R
A

L D
iscu

ssio
n

 6
1

4
.7

 G
E

N
E

R
A

L D
iscu

ssio
n

 6
1

explanations. One way to address this could be to learn from the knowledge-based systems

community, and provide deeper justification [Gregor and Benbasat, 1999] explanations to help

users understand why the system behavior may be different from typical everyday understanding.

4.7.2 FROM THE LAB TO THE REAL WORLD

Our intelligibility test infrastructure differs from real applications in that users would have

different goals when asking either of the intelligibility question types. In reality, users would ask

Why questions when they lack an understanding of how the application works, but Why Not

questions when they expect certain results that the application did not produce. This distinction in

user expectations and goals was not present in our lab study. Therefore, even if Why Not

explanations are found to be less effective than Why explanations, for real systems, users may

prefer the former explanation type to bridge gaps in their understanding and improve their trust

and acceptance of the system.

In order to investigate how our findings play in a real-world setting, we have developed an

intelligible, context-aware plugin [Lim and Dey, 2012a] for the AOL Instant Messenger (AIM) that

uses predictions of buddy responsiveness to instant messages (based on [Avrahami and Hudson,

2006]). In a future longitudinal deployment we plan to investigate how explanations affect usability

and acceptability.

4.7.3 IMPLICATIONS FOR CONTEXT-AWARE APPLICATIONS

While our intelligibility test infrastructure has some characteristics of context-aware systems, real

context-aware applications are more complex and several issues would have to be handled

regarding the provision of explanation types. Firstly, applications that use decision tree models

tend to have much larger trees learned from possibly hundreds of features, and it would not be

scalable to generate explanations from them. For example, a tree of depth 13 could lead to the Why

traces that have over 10 inequality relations. The explanations returned would be too long for users

to assimilate and remember. One way to deal with the larger tree size is to just provide subsets of

reasons in the explanations. For example, the Why trace could just provide the top 5 inequality

relations ranked by how much each relation affects the prediction accuracy. Providing subsets of

explanations would provide users with only partial understanding of each application behavior

instance, and users may have to interact with the system longer before understanding the system

62 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

better. One way to reduce overall learning time may be to start new users with higher-detail

explanations, then progress to less detail the more they interact with the system.

While our setup dealt with decision tree learners, the naïve Bayes classifier is another popular

learner used in context-aware applications. Even though they are not as intuitive as decision trees,

Naïve Bayes models can be interpretable, and there are several visualizations to explain them (e.g.,

nomograms [Mozina et al., 2004]). However, some learners (e.g., Support Vector Machines with

Gaussian kernels, Neural Networks) are considered black-boxes [Nugent and Cunningham, 2005]

and are not inherently interpretable. Fortunately, there have been some attempts to make them

explainable using decision trees or rules (e.g., [Andrews, Diederich, and Tickle, 1995]). We can then

use the same techniques to provide explanations for systems based on decision tree models.

Another issue with real systems is that users may not like to receive explanations all the time, but

on demand instead, because the former may be too obtrusive. In Chapter 9, we performed a study to

compare if users can still benefit sufficiently from explanations if they get to choose when and how

often they can receive explanations, and if this usage of explanations can lead to improved learning.

Our results suggest the effectiveness and importance of providing Why and Why Not explanations

over How To and What If. The former two deal with Norman’s gulf of evaluation, while the latter

two deal with the gulf of execution [Norman, 1988]. While we feel that this dichotomy should

remain true for informative context-aware systems (e.g., applications to determine interruptibility

of others to inform onlookers [Avrahami and Hudson, 2006; Tullio et al., 2007]), systems that are

more pro-active (e.g., applications that send notifications based on the user’s interruptibility) may

benefit more with the How To and What If explanations. With those explanations, users would be

better informed of how they can carry out their tasks.

4.8 CONCLUSIONS AND FURTHER WORK

We have described a large controlled study comparing the provision of explanations addressing

four explanation type questions (Why, Why Not, How To, and What If). We developed a web-based

platform that provides a functional input-output interface of an intelligent system prototype that

provides different types of explanations. Our findings suggest that providing reasoning trace

explanations for context-aware applications to novice users, and in particular Why explanations,

can improve user’s understanding and trust in the system.

4.8 CONCLUSIONS AND FURTHER WORK 63

4
.8

 C
O

N
C

L
U

SIO
N

S an
d

 F
u

rth
er W

o
rk

 6
3

4
.8

 C
O

N
C

L
U

SIO
N

S an
d

 F
u

rth
er W

o
rk

 6
3

Our results of the relative strengths and weaknesses of each explanation type came from a between-

subjects study, but to gain an insight into which explanation type individual users may prefer, we

wish to run a within-subjects study, where each participant sees multiple explanation types. In

Chapters 7 and 9, we investigate this with an intelligible context-aware mobile application, which

provides several explanation types.

Furthermore, though our results do not show the effectiveness of How To and What If explanations,

we believe they may be more useful given better motivating scenarios and better interface design.

Therefore, we continued to pursue our investigations into these explanation types in later work

(Chapters 5, 6, 7, and 9), and specifically sought out a user friendly interface for explanations in

Chapter 7.

We next sought to widen the scope of intelligibility to include more questions that users may ask of

context-aware applications. In Chapter 5, we expand on four intelligibility question types to include

11 question types for our taxonomy of Intelligibility.

65

5 ASSESSING DEMAND FOR

INTELLIGIBILITY

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2009). Assessing Demand for Intelligibility in Context-Aware

Applications. In Proceedings of the 11th international Conference on Ubiquitous Computing

(Orlando, Florida, USA, September 30 - October 03, 2009). Ubicomp '09. ACM, New York, NY,

195-204.

ABSTRACT. Intelligibility can help expose the inner workings and inputs of context-aware

applications that tend to be opaque to users due to their implicit sensing and actions. However, users

may not be interested in all the information that the applications can produce. Using scenarios of four

real-world applications that span the design space of context-aware computing, we conducted two

experiments to discover what information users are interested in. In the first experiment, we elicit

types of information demands that users have and under what moderating circumstances they have

them. In the second experiment, we verify the findings by soliciting users about which types they

would want to know and establish whether receiving such information would satisfy them. We

discuss why users demand certain types of information, and provide design implications on how to

provide different explanation types to make context-aware applications intelligible and acceptable to

users.

5.1 INTRODUCTION

In Chapter 4, we found that some types of explanation were more effective than others in improving

users’ understanding and trust of a context-aware intelligent system. However, it was not clear what

information users actually want to know and will ask about, and whether there are more explanation

66 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

types than we had previously considered. In this work, we explored and assessed a taxonomy of user

demand for intelligibility: which types of questions users want answered, and how answering them

improves user satisfaction of context-aware applications. User satisfaction is obviously crucial for

adoption and acceptance of such technologies.

To make context-aware applications intelligible so that they can expose their inner functions to the

end-user, much research has looked into how to generate explanations from the underlying

application models and deliver them to users (e.g., [Cheverst et al., 2007; Ko and Myers, 2009;

Kulesza et al., 2009; Lim and Dey, 2009]). However, little work has been done to compare the

impact of different types of explanations or in the domain of context-aware computing. Users may

not be receptive to these explanations, especially when they end up using the applications in ways

for which they were not designed [Orlikowski, 2000], and when those explanations do not adapt to

varying situations of use. Thus it is important to explore information demand from the user’s

perspective lest effort is wasted in implementing explanations that would see little use.

Researchers have explored what users want to know in other domains. McGuinness and colleagues

[Glass, McGuinness, and Wolverton, 2008; McGuinness et al., 2007] have identified information

need factors that influence the level of trust in adaptive agents. They used interviews to identify

explanation requirements and rank question types according to their helpfulness. Gregor and

Benbasat’s [1999] meta-review investigates explanation types that users of knowledge-based

systems (KBS) would like to have. While adaptive agents and KBS are similar to context-aware

applications (which may also use agents or knowledge bases and rules), they are work-oriented,

while context-aware applications are targeted for everyday use, for many more situations and a

wider range of users, and under more situations [Abowd, Mynatt, and Rodden, 2002]. Thus we need

to explore how these different requirements would lead to different intelligibility needs.

The chapter is organized as follows: we discuss how supporting intelligibility by providing

explanations that users want, has the potential to increase user satisfaction and thus acceptance of

context-aware applications. We then describe our experimental design that uses surveys and

scenarios to expose users to a range of experiences with context-aware applications. We present

two experiments that investigate what types of information users want. In the first experiment, we

elicit the types of information users are interested in and under what moderating circumstances. In

the second experiment, we validate our findings by presenting users with 11 information types as

intelligibility features in a controlled study and measure their impact on user satisfaction. We end

5.2 HYPOTHESES AND APPROACH 67

5
.2

 H
Y

P
O

T
H

E
SE

S an
d

 A
p

p
ro

ach
 6

7

5
.2

 H
Y

P
O

T
H

E
SE

S an
d

 A
p

p
ro

ach
 6

7

with a discussion of why users of context-aware systems demand certain types of information in

different situation, and provide design recommendations for providing different information types

to make context-aware systems intelligible and acceptable to users.

5.2 HYPOTHESES AND APPROACH

We hypothesize that there are different types of information in which users are interested, for

different context-aware applications, and different situations. Since people ask information seeking

questions due to cognitive disequilibrium [Graesser and McMahen, 1993] and to correct knowledge

deficits [Van der Meik, 1987], we believe that satisfying these information demands through

intelligibility can lead to better satisfaction when using these applications and improved adoption

and acceptance. In order to elicit the information demands users have for context-aware

applications under various situations, we conducted a study of the demand for explanations and

different types of information in several scenarios users may find themselves in as they use context-

aware applications.

Using described scenarios instead of actual field deployments allows us to quickly and more

effectively study and understand the impact of different information on intelligibility and

satisfaction, without having to implement and deploy a variety of applications, any of which could

fail for reasons independent of our main focus. Next we describe four applications we use to focus

our scenarios. For each application, the scenarios intentionally span a range of incorrect,

appropriate and unexpected or anomalous, but not necessarily wrong behavior, to probe directly at

the issues of intelligibility and satisfaction.

5.3 SETUP: SCENARIOS OF FOUR CONTEXT-AWARE

APPLICATIONS

To investigate the demand for intelligibility in the space of context-aware applications, we selected

four prototypical context-aware applications: (i) a desktop interruption management application

(an Instant Messenger plugin), (ii) a remote person monitoring peripheral display (Digital Family

Portrait), (iii) a context-aware reminder application (CybreMinder), and (iv) a mobile context-

aware tour guide (CyberGuide). All applications in this study behave according to models of learned

decision trees.

68 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5.3.1 INTERRUPTION MANAGEMENT

Figure 5.1: (Left) Screen capture of a five-second video clip for the IM Auto-Notification

application survey, showing the user rushing to meet a deadline. (Right) Screenshot of a non-

work IM message which had been suppressed and delivered later.

We designed the instant messenger (IM) auto-notification plugin based on recent work on a

predictive model to determine how long a buddy would take to respond to a message [Avrahami

and Hudson, 2006]. Our application uses the responsiveness prediction to determine the subject’s

interruptibility [Fogarty et al., 2005], and either forwards or suppresses incoming IM messages. We

developed four main scenarios for this application where the subject is in various states of

availability:

1. Rushing to reach an imminent deadline,

2. Taking a break and surfing the Internet,

3. Reading a work-related book, and

4. Returning from a protracted informal meeting.

For each scenario, the user receives an IM message from

 A colleague regarding critical work, or

 A friend regarding a fun video.

There are 16 scenarios (4 availability × 2 received messages × 2 application actions).

5.3 SETUP: SCENARIOS OF FOUR CONTEXT-AWARE APPLICATIONS 69

5
.3

 S
E

T
U

P: Scen
ario

s o
f F

o
u

r C
o

n
text-A

w
are A

p
p

licatio
n

s
 6

9

5
.3

 S
E

T
U

P: Scen
ario

s o
f F

o
u

r C
o

n
text-A

w
are A

p
p

licatio
n

s
 6

9

5.3.2 REMOTE MONITORING

Figure 5.2: (Left) Screen capture of a five-second video clip for the Elderly Remote

Monitoring application survey, showing the user casually glancing at the display.

Screenshots of a normal event (Middle) and an anomalous event (Right).

We used the Digital Family Portrait [Mynatt et al., 2001] as an example for remote monitoring

systems. It leverages a picture frame to present the current status of an elderly family member as

he or she goes through daily life living independently in her home, to remote loved ones. Our

rendition of the Digital Family Portrait is based on a decision tree model which we define as several

small subtrees, each addressing groups of scenarios. We present a subset of what the sensors on the

elder’s body and in the home are described as detecting:

1. Whether the family member has fallen,

Whether there is a fire;

2. How many times the toilet has been used recently,

Whether the usage frequency is anomalous,

Whether the system thinks this could be a symptom of incontinence;

3. Whether the family member is watching TV,

Whether the family member is sleeping

4. Whether the family member’s house is vacant,

Whether there is an intruder.

For this application, there are a total of 13 scenarios.

70 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5.3.3 REMINDER

 Figure 5.3: (Left) Screen capture of a five-second video clip for the Reminder application

survey, showing the phone triggering at the pantry. Screenshots of a work-related reminder

(Middle) and personal reminder (Right).

We used CybreMinder [Dey and Abowd, 2000] as an example for reminder systems. CybreMinder is

a context-aware reminder application that considers combinations of contexts, such as location,

time, and collocation, to trigger reminders. It is based on several personal and environmental

sensors, and triggers reminders based on the satisfaction of one of several rules (modeled as a

decision tree). We developed scenarios that would relate to three types of reminders (mentioned in

[Dey and Abowd, 2000]):

1. Reminder to discuss an important issue when the user and a colleague serendipitously meet

(collocation trigger);

2. Reminder to take the umbrella when it is forecasted to rain and the user is approaching the

front door (location and information trigger); and,

3. Reminder to discuss party planning with a friend when the user and the friend are free, and

the user is at the office (complex trigger).

We developed 13 scenarios based on these three reminders.

5.4 EXPERIMENT 1: ASSESSING DEMAND FOR INFORMATION TYPES 71

5
.4

 E
X

P
E

R
IM

E
N

T 1
: A

ssessin
g D

em
an

d
 fo

r In
fo

rm
atio

n
 T

y
p

es
 7

1

5
.4

 E
X

P
E

R
IM

E
N

T 1
: A

ssessin
g D

em
an

d
 fo

r In
fo

rm
atio

n
 T

y
p

es
 7

1

5.3.4 TOUR GUIDE RECOMMENDER

Figure 5.4: (Left) Screen capture of a five-second video clip for the Tour Guide Recommender

application survey, showing the user walking by the museum, a point of interest. (Right)

Animated screenshots recommending a dinosaur exhibit at the museum.

We used CyberGuide [Abowd et al., 1997] as an example for tour guide systems. CyberGuide is a

mobile context-aware tour guide that uses context to recommend attractions to a user. Our

rendition of CyberGuide considers the contexts of location (where the user is currently located),

keywords (that the user has recently used), and navigation information like traffic. We use three

settings for a user with a keen interest in museums and dinosaurs visiting an unfamiliar city:

1. Walking by museum with a dinosaur exhibit;

2. Having a conversation with a friend talking about museums and dinosaurs; and,

3. Meeting a friend at his home with the application recommending a route to the destination.

We developed 12 scenarios based on these three settings

5.4 EXPERIMENT 1: ASSESSING DEMAND FOR INFORMATION

TYPES

Based on these four applications and the scenarios we developed, we conducted our first

experiment on the intelligibility of context-aware applications to investigate what questions users

want to ask in the various scenarios.

72 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5.4.1 METHOD

We created one survey for each of the four prototypical context-aware applications. At the

beginning of each survey, the respective context-aware application is described to the participant.

Its functionalities are described, but not explained or elaborated on (e.g., participants are not told

where it gets its information from). Depending on the application survey, participants are shown 3-

4 scenarios, described from a first-person perspective that places participants in certain

circumstances (e.g., rushing to complete a report due in half an hour for the IM application). The

scenarios are represented by short 5-second video clips (e.g., see Figure 5.1 left) and short textual

descriptions about what is happening. After a scenario is presented, participants are shown 2-5

(depending on the application and scenario) instances of the scenario, one at a time, with different

application responses, represented as screenshots along with text (e.g., see Figure 5.1 right), where

the behaviors may be appropriate, strange, or incorrect. For each application response, participants

are reminded about the scenario and can replay the video, if necessary.

To mitigate order effects, the order of scenarios was randomized for each participant. For each

scenario, we posed several questions (see Table 1) to ascertain what the participant thought and

felt about the application response, and what information they would want to know, if any, for the

situation. Except for a question on application satisfaction with a 7-point Likert scale response, the

rest of the questions were free text response.

Measure Survey Question Response

Application
Satisfaction

I am satisfied with the application response 7-point Likert
scale

Action What will you do? Free text

User Feeling How do you feel about what the application did?

Information
Demand

What information or knowledge would you like to know about what
the application did or why it behaved this way?

Table 5.1: Questions posed to participants for each application response scenario to find out

what they think the application response, what they think is happening, and their

information demand for each scenario.

We recruited 250 participants (47% female; ages 18 to 61, M=29.5) from Amazon Mechanical Turk,

and paid them $4 for completing a survey. Participants were divided among the four applications

surveys, and survey analysis was conducted between-subject.

5.4 EXPERIMENT 1: ASSESSING DEMAND FOR INFORMATION TYPES 73

5
.4

 E
X

P
E

R
IM

E
N

T 1
: A

ssessin
g D

em
an

d
 fo

r In
fo

rm
atio

n
 T

y
p

es
 7

3

5
.4

 E
X

P
E

R
IM

E
N

T 1
: A

ssessin
g D

em
an

d
 fo

r In
fo

rm
atio

n
 T

y
p

es
 7

3

5.4.2 CODING ANALYSIS: EXPLANATION TYPES AND MODERATORS

Figure 5.5: Hierarchical representation of explanation types that users want to know.

We coded the participant responses to the free response questions to determine whether

participants wanted more information regarding the application or situation, and what type of

information they wanted. Using the open coding method of grounded theory [Strauss and Corbin,

1990], and drawing from question types employed previously in [Antifakos et al., 2005] and

Chapter 4, we derived a set of explanation types that users are interested in for context-aware

applications. In the rest of the chapter, we shall refer to these types as explanation types. Figure 5.5

presents them in terms of a hierarchy and Table 5.2 shows the coding scheme used.

Environment

Situation

Application

Functional

Model

Input

Output

Control

Certainty

Question

Why

Why Not

How

What If

What Else

7
4

 C
H

A
P

T
E

R
 5

 | A
SS

E
SSIN

G
 D

E
M

A
N

D
 F

O
R

 IN
T

E
L

L
IG

IB
IL

IT
Y

Theme κ Values / Description Example Participant Text

Impression .91 – Negative

(Useless / Dissatisfied / Irritated / Frustrated)

“Angry” “Bad” “I'm pissed off it could have cost me my job” “I feel cheated”
“I'm disappointed in the application”

0 Neutral / equivocal “It's ok.” “fine”

+ Positive (Useful / Satisfied) “Good. Positive.” “I love it, works like a charm.”

Trust of
Device

.91 0 Abandon it, Complain, Lost Trust, Doubt it,
Dissatisfied / believe it is wrong

“I wouldn't be paying attention to it anymore” “Something must be wrong
with one of the sensors.” “It may have misinterpreted an action.”

1 Satisfied / Believe / Trust “The application performed properly.” “I'm satisfied.” “It's okay, it was my
fault.”

Theme κ Values / Description Example Participant Text

Information
Demand

.84 0 None / Not necessary -

1 Too much info already / Overwhelmed “It is more than I would want to know.”

2 Yes / Not enough info/details (See below)

Domain of
Explanation

.95 0 None -

1 Application, Device, Sensors (includes logic) (See below)

2 Situational / Event “My status and Johnny's priority.” “How often the person moved, or what
the rate of respiration was.” “Our locations and distance.”

Table 5.2: Coding scheme for Experiment 1. The first two themes indicate participants’ thoughts on the scenario, and the

remaining themes indicate their information needs. Most of the participant text responses were coded by one coder, with a 10%

random sample of responses coded by a second coder. Inter-coder reliabilities (κ) for each theme are indicated.

* denotes high apparent reliability due to low occurrence of coded measure (i.e., too few affirmative counts).

5
.4

 E
X

P
E

R
IM

E
N

T
 1

: A
SSE

SSIN
G

 D
E

M
A

N
D

 F
O

R
 IN

F
O

R
M

A
T

IO
N

 T
Y

P
E

S 7
5

Theme κ Values / Description Example Participant Text

Inputs .95 Sensor thresholds, ranges, sensitivity, limitations,
capabilities, coverage, etc

“I would like to know what triggers the alarm”

“Where does it get its forecasting information? How did it know I was leaving
rather than entering my house?”

Model .97 Application conceptual model / Criteria / Heuristic
/ Rules / Logic / How does it know / how it works

(See below)

Outputs 1* Options / Alternatives that the system could
produce. Distinguish from What Else

“I would like to know fully what type of things that it would be able to detect
[recognition output]” “I would want to know if there was a quicker route.”

Theme κ Values / Description Example Participant Text

Why 1 Why did the application do X? “Why did it let [the message] through?”

“How does it know it is going to rain?”

Why Not .96 Why did it not do Y? “I would like to know why the application did not filter out this message.”

“Why application failed to sense that I was free in the office and failed to trigger.”

What Else .95 What (else) is it doing? “What other message are in the queue” “My location, weather, and time.”

“How I could look up more specific details about the event.”

How .97 How (under what condition) does it do Y? “I would be interested in knowing how it decides how long to suppress
messages.”

What If 1* What if there is a change in conditions, what would
happen?

“I'd like to know in what will application do in certain situations”

Certainty 1* Application confidence of its actions / decisions “How can I be sure it is accurate?”

“I'd like to know how accurate the chosen forecasting system was.”

Control 1*
How to change settings / thresholds

“I would want to know if I could put a time limit on it.”

“I would like to know how to make it send the correct reminder.”

Table 5.2 (Continued).

76 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5
.4

 E
X

P
E

R
IM

E
N

T
 1

: A
SSE

SSIN
G

 D
E

M
A

N
D

 F
O

R
 IN

F
O

R
M

A
T

IO
N

 T
Y

P
E

S 7
6

First, depending on the situation, participants may or may not have any information demand. If they

want more information, they may want to know more about how the application works, in terms of

functional inputs, outputs and conceptual model. A conceptual model describes the decision and

action processes performed by the application to use the inputs in producing output. Regarding the

conceptual model, the participant may ask for information that can be represented in the following

questions:

1. Why did the application do X?

2. Why Not: why did it not do Y?

3. How (under what condition) does it do Y?

4. What (Else) is it doing?

5. What If there is a change in conditions, what would happen?

Why and Why Not questions seek situation-specific information, while How seeks more

comprehensive information of how the output can be obtained. Although context-aware

applications that sense and act implicitly may elicit questions on what the application is doing,

question 4 (What Else) does not ask this. Instead, participants were interested in knowing what

else the application was doing (e.g., whether the Digital Family Portrait had contacted emergency

services after detecting the elderly family member had fallen). Regarding non-functional

information about the application, users may want to know how certain the application is of its

actions, decisions, and inferences (Certainty). In agreement with past research [Barkhuus and Dey,

2003b; Bellotti and Edwards, 2001; Dey et al., 2006], users also want to be able to Control the

application (e.g., change settings for reminders), and want information on how to control it. In

addition to more information about the application, the user may also want to know more about the

current Situation. Regarding the situation, participants expressed their questions mostly in terms of

What Else, and sometimes as Why or Why Not.

We also used the survey responses to derive themes describing circumstances that moderate

demand for these explanation types:

Application Satisfaction. (7-pt Likert scale) How satisfied the user is with the application

behavior.

Impression. Coded response of whether the user has a positive, neutral, or negative impression of

the application, given the situation.

 5.4 EXPERIMENT 1: ASSESSING DEMAND FOR INFORMATION TYPES 77

5
.4

 E
xp

erim
en

t 1
: A

ssessin
g D

em
an

d
 fo

r In
fo

rm
atio

n
 T

y
p

es
 7

7

5
.4

 E
xp

erim
en

t 1
: A

ssessin
g D

em
an

d
 fo

r In
fo

rm
atio

n
 T

y
p

es
 7

7

Trust / Reliance. Coded response of whether the user is satisfied (believes application, trusts it) or

dissatisfied (doubtful, lost trust, in disbelief, found fault, will abandon) with the application.

These measures were found to be correlated and so we combined them into a summed and

reversed measure of application Inappropriateness (α=.68). We split the scenarios into 2 groups:

those with a high or low Inappropriateness score (using a Tukey pair-wise test; p<.001).

Based on the application functionality in various scenarios, we developed more moderators. For

example, because CybreMinder supports goals of pre-planned tasks, while the other three

applications do not, scenarios can be separated into whether they are goal-supportive or not. The

other moderators are:

Criticality. Whether the situation presented is critical. Situations involving accidents or medical

concerns with the Digital Family Portrait and work-related urgency for the IM Auto-Notification

were considered highly critical. Due to the profound influence of the high criticality of the fall and

incontinence scenarios in the Digital Family Portrait survey, these scenarios were excluded from

consideration of the other moderators.

Goal-Supportive. Whether the situation is motivated by a goal the user has (CybreMinder

scenarios only).

Recommendation. Whether the application is recommending information for the user to follow or

ignore (CyberGuide scenarios only).

Externalities. Whether the application is perceived to have high external dependencies (e.g.,

getting weather information from a weather radio station) vs. being perceived as “self-contained.”

CybreMinder and CyberGuide had perceived high external dependencies.

78 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5
.4

 E
X

P
E

R
IM

E
N

T
 1

: A
SSE

SSIN
G

 D
E

M
A

N
D

 F
O

R
 IN

F
O

R
M

A
T

IO
N

 T
Y

P
E

S 7
8

5.4.3 RESULTS: USER DEMAND OF INFORMATION TYPES

Results are shown in Table 5.3, describing the overall demand for various types of information, and

how the demand changes due to moderating circumstances. Discussion is deferred until after we

present the results of Experiment 2.

A
v

er
ag

e
(%

)

 In
ap

p
ro

p
ri

at
e-

n
es

s

C
ri

ti
ca

li
ty

G
o

al
-

Su
p

p
o

rt
iv

e

R
ec

o
m

m
en

d
-

at
io

n

E
xt

er
n

al
it

ie
s

Information 72.5 ↑↑ ↑ ↑↑

Application 59.8 ↑ ↓↓ ↑↑ ↑↑

Situation 12.0 ↑↑ ↑* ↓

Inputs 19.8 ↓ ↑↑ ↑↑

Model 33.6 ↑↑ ↑

Outputs 2.9 ↓ ↑↑

Why 19.0 ↑

Why Not 8.2 ↑↑ ↑↑ ↑↑

How 13

What If 0.5

What Else 6.4

Certainty 1.7

Control 10.0 ↑

Table 5.3: Results of Experiment 1. The left

column shows the percentage of participants

who had a demand for various explanation

types. The right columns show the effect size

of whether higher moderator rating values

(of each column) leads to increased (up

arrows) or decreased demand. All results

indicate Bonferroni-corrected (n=78)

significant differences (p<.01; * denotes

p<.05). Cohen’s d is reported to determine

the size of differences rather than just

whether the differences are significant.

Single arrow indicates small effect size

(), double arrows indicates

medium effect size ().

How to read: e.g., 72.5% of participants demand

information, in general; participants demand

more information about why not when the

application behavior is more Inappropriate.

 5.5 EXPERIMENT 2: ASSESSING DEMAND FOR EXPLANATION TYPES 79

5
.5

 E
xp

erim
en

t 2
: A

ssessin
g D

em
an

d
 fo

r E
xp

lan
atio

n
 T

y
p

es
 7

9

5
.5

 E
xp

erim
en

t 2
: A

ssessin
g D

em
an

d
 fo

r E
xp

lan
atio

n
 T

y
p

es
 7

9

5.5 EXPERIMENT 2: ASSESSING DEMAND FOR EXPLANATION

TYPES

While Experiment 1 sought to elicit the types of information users wanted for explanations of

context-aware applications under various moderating circumstances, Experiment 2 solicits user

demand for the types of information through explicit suggestion of questions and provision of

explanations and studies the impact of meeting this demand on user satisfaction. For each of the

explanation types identified in Experiment 1, we wrote corresponding questions and explanations

for each application situation response of Experiment 1. We added one more explanation type in

response to demand for more information about the application conceptual model. This

“Visualization” explanation type provides a diagrammatic representation of the underlying decision

tree. Table 5.4 shows examples of questions and explanations. We prepared 11 explanation types

for each of the 54 scenarios, for a total of 594 explanations; some are repeated for similar scenarios.

We hypothesize that: (i) when asked specifically about whether they want an explanation type

(heretofore called solicited information demand), users should reflect the same demands (elicited

information demand) as that of experiment 1; and providing information for demanded explanation

type will (ii) increase application satisfaction, and (iii) increase user rating of that explanation type.

5.5.1 METHOD

We reused the applications and scenarios from Experiment 1, with one application per survey.

Experiment 2 is designed as a between-subject study for the explanation types (11 conditions plus a

None condition). Participants are assigned to a version of the survey with only one Explanation

type provided (including None). To mitigate order effects, four versions of each survey were

deployed with a different random ordering of scenarios. On the survey, participants use a 7-point

Likert scale question to rate their satisfaction with the application. In the explanation type

conditions, participants were provided with a corresponding intelligibility question and

explanation. We posed additional queries regarding how important it was to get the question

answered, how much they are satisfied with the explanation and how useful they found it. We

recruited 610 participants (42% female; ages 18 to 61; M=28.9) from Amazon Mechanical Turk, and

evenly distributed them across the 12 conditions. Participants were paid $2.

8
0

 C
H

A
P

T
E

R
 5

 | A
SS

E
SSIN

G
 D

E
M

A
N

D
 F

O
R

 IN
T

E
L

L
IG

IB
IL

IT
Y

Explanation Sample Question Sample Explanation

Certainty How certain is the system of this
report?

The system is 90% certain of this report.

Inputs What does the system use to sense
accidents?

The system uses an accelerometer worn by the elderly family member, speakers around the
home, and smoke detectors.

Outputs What accidents can the system
sense?

The system can sense the following accidents: Falls and Fire/Smoke.

Why Why did the system report a fall? The system reported a fall because there was a high acceleration from the accelerometer worn
by the family member, and there was a loud sound.

How How does the system distinguish a
between a falling object and
person?

The system did not report a fire, because the smoke detector did not set off.

Why Not Why did the system not report a
fire?

The system detects a fall through high acceleration detected from the accelerometer worn by
the elderly family member, and a loud noise. The system detects a fall of an object through a
loud noise, but no high acceleration from the accelerometer.

What If If an object falls, would the system
report a fall?

If an object falls, but the accelerometer worn by the family member does not report a high
acceleration, the system would not report a fall.

What Else
(Application)

Did the system alert emergency
services of the accident?

The system has not alerted emergency services and is pending your approval.

Conceptual
Tree Model
Visualization

What is the overall model of how
the system works?

The following diagram describes a simplified view
of the conceptual model of how the system works.
It works by tracing a decision tree and taking
branches at decision points to arrive at a
conclusion. Red arrows indicate false conditions,
and green indicates true. For example, if smoke is
detected, then the system concludes there is a fire.

Control How can I change settings to control
the sensitivity for reports?

Some settings can be changed through a control panel accessed via the menu: Options >
Settings.

Situation

(What Else)

What was the family member doing
before the accident?

The family member was preparing dinner in the kitchen.

Table 5.4: Sample questions and explanations of various explanation types participants received for the Digital Family Portrait.

5.5 EXPERIMENT 2: ASSESSING DEMAND FOR EXPLANATION TYPES 81

5
.5

 E
X

P
E

R
IM

E
N

T 2
: A

ssessin
g D

em
an

d
 fo

r E
xp

lan
atio

n
 T

y
p

es
 8

1

5.5.2 RESULTS ANALYSIS

We report three metrics in experiment 2: (i) solicited intelligibility demand, (ii) satisfaction of the

application with and without intelligibility, and (iii) user rating of the usefulness of intelligibility.

Table 5.5 summarizes the results of Experiment 2 and compares them with Experiment 1. Results

are reported for explanation types across all scenarios, and by moderating circumstances (high vs.

low rating groups) as described in Experiment 1.

5.5.2.1 SOLICITED INTELLIGIBILITY DEMAND (SID)

Participant solicited intelligibility demand is measured from responses to the 7-point Likert scale

question on how important it is to receive an answer to the supplied explanation type question. All

described differences are significant (p<.05) using a Tukey pair-wise comparison test. As with

experiment 1, the moderating effects are measured by the effect size between low and high

moderator rating groups.

5.5.2.2 DIFFERENCE IN APPLICATION SATISFACTION (∆AS)

To calculate relative application satisfaction from None, for each scenario, we subtracted the means

of satisfaction of the None condition from each response in the 11 explanation type conditions.

Across moderating circumstances, we calculate the effect size between the high and low moderator

groups. If the effect size is small or medium, we report the difference in scale value mean along with

the p value of a t-test between the groups.

5.5.2.3 INTELLIGIBILITY USEFULNESS RATING (IUR)

We derived an intelligibility usefulness rating based on the mean of responses regarding

explanation satisfaction and explanation usefulness (Cronbach’s α=.84). We used the same analysis

as described for siD.

8
2

 C
H

A
P

T
E

R
 5

 | A
SS

E
SSIN

G
 D

E
M

A
N

D
 F

O
R

 IN
T

E
L

L
IG

IB
IL

IT
Y

 Average Inappropriateness Criticality Goal-Supportive Recommendation Externalities

 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

 eiD(%) siD ∆aS iuR eiD siD ∆aS iuR eiD siD ∆aS iuR eiD siD ∆aS iuR eiD siD ∆aS iuR eiD siD ∆aS iuR

Information 72.5 5.18 0.11 4.91 ↑↑ 0.47 -0.47 0.81 0.45 ↑ ↑↑

Application 59.8 5.22 0.09 4.9 ↑ 0.45 -0.48 ↓↓ 0.79 0.44 ↑↑ ↑↑

Situation 12.0 4.82 0.28 4.92 0.76 ↑↑ 1.15 0.62 ↑* -0.71 -0.75 ↓ -0.52

Inputs 19.8 5.61 0.15 5.17 0.44* -0.45 ↓ 0.50* 0.61 ↑↑ -0.66 ↑↑

Model 33.6 5.04 0.01 4.7 ↑↑ 0.46 -0.52 0.83 0.41 ↑ 0.42 -0.45 -0.42

Outputs 2.9 5.62 0.06 5.11 0.59 0.75 0.53 ↓ -0.56 ↑↑ -0.48*

Why 19.0 5.27 -0.36 4.32 ↑ -0.65 1.21 0 0.59

Why Not 8.2 4.57 -0.01 4.42 ↑↑ 0.68 0.91 ↑↑ 0.95 0.74 -0.68 ↑↑ 0.44

How 13.4 5.20 0.22 5.18 -0.48 0.54 0.73 -0.67 -0.80 -1.11 -0.63 -0.75

What If 0.5 5.15 0.11 4.64 0.49 0.97 -1.33 -1.16 -0.84 -0.88

What Else 6.4 5.09 0.04 4.83 -0.83 ↑ 0.81

Viz. 5.29 0.29 4.71 -0.37 0.53 -0.56 0.84 0.88 -0.62 -0.83 0.54

Certainty 1.7 5.25 0.33 5.13 -0.66 0.99 0.42* 0.60 -0.49* -0.51* 0.62 -0.43

Control 10.0 5.37 0.23 5.42 ↑ 0.79 0.54* 0.53 -0.80 -0.60

Table 5.5: Results of Experiment 2 and Experiment 1. eiD: elicited information demand. siD: solicited information demand. ∆aS:

difference in application satisfaction for providing explanation type. iuR: intelligibility usefulness rating of explanation received.

For Experiment 2, left columns under Average are the mean values of the Likert scale for siD and iuR, and ∆aS, the difference in

means between intelligibility-provided (various types) and non-intelligible. The right columns are differences in means or

differences between high and low moderator rating groups. All Experiment 2 results of each measure are Bonferroni corrected

(n=84) and significant (p<.01, * denotes p<.05).

5
.5

 E
X

P
E

R
IM

E
N

T
 2

: A
SSE

SSIN
G

 D
E

M
A

N
D

 F
O

R
 E

X
P

L
A

N
A

T
IO

N
 T

Y
P

E
S 8

3

How to Read: e.g., for explanation type Situation, 12% of participants in experiment 1 were interested in knowing about the situation; in

experiment 2, participants wanted to know about it (M=4.82, above neutral); they rated it well, in general (M=4.92) and had a significant

improvement in application satisfaction (∆M=0.28). When considering scenarios according to Criticality, participants want more

information about the situation (both elicited and solicited, both medium effects), experienced more satisfaction after receiving

explanations for more critical scenarios (p<.05), and rated situation explanations better for those scenarios (small effect).

84 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5
.6

 D
ISC

U
SSIO

N
 8

4

5.6 DISCUSSION

We discuss the meaning of the results from both experiments in terms of demand for intelligibility

and what they imply for design. Among the four context-aware applications we investigated and

their various scenarios, we have determined average demands for various explanation types.

However, these demands change depending on circumstance and function of the application.

Participant awareness to seek particular explanation types also increases their demand for these

types. We also found that explanations should be carefully tailored to be effective, otherwise, they

may be more detrimental than helpful.

Participants generally wanted information about the Application, and designers can anticipate this,

but they also moderately wanted information about the Situation in which the application acts.

When asking about the application, participants tend to focus on the application Model rather than

the Inputs or Outputs. Of the application model, they care most about Why the application behaved

as it did in specific situations, and How it works in general and How To produce certain actions or

decisions. Participants indicated a strong demand for Visualizations (with significant increase in

application satisfaction, and intelligibility explanation rating). This may be because participants

prefer graphical to textual explanations, so visualization-based explanations may be a better means

to deliver explanations. As in Chapter 4 [Lim, Dey, and Avrahami, 2009], Why Not explanations had

a significant but limited demand compared to why. As indicated by many researchers (e.g.,

[Barkhuus and Dey, 2003b; Bellotti and Edwards, 2001; Dey et al., 2006]), our participants were

interested in knowing how to control applications. We found that users were more satisfied with

receiving this explanation type even though we only told them where they could find a control

panel. This echoes findings in [Glass, McGuinness, and Wolverton, 2008] of how users adopt a “trust

but verify” approach and just need to know they can override the settings, but not necessarily do so.

5.6.1 DEMAND FOR INTELLIGIBILITY VARIES WITH CIRCUMSTANCES

The Why Not explanation type is particularly effective for Inappropriate circumstances and Goal-

Supportive functions. Participants would tend to ask Why Not when encountering an inappropriate

behavior, especially if it deviates from their goals. Output information is desired more for

Recommenders and Inputs information for applications with high Externalities. Table 5.5 indicates

other explanation types that vary by circumstances.

5.6 DISCUSSION 85

5
.6

 D
ISC

U
SSIO

N
 8

5

5.6.2 HIGH INTELLIGIBILITY DEMAND FOR CRITICAL CIRCUMSTANCES

Criticality is a particularly significant moderating circumstance as for highly critical scenarios,

participants want as much information about any explanation type (especially about the Situation

and What Else) as they can get if they are aware of its availability. However, it is hard to satisfy

participants with any explanation types in highly critical scenarios, possibly due to the stress

during the critical period, and preoccupation with the primary problem.

5.6.3 AWARENESS OF EXPLANATION TYPES CHANGES DEMAND

Just as in [McGuinness et al., 2007], we found that awareness of the existence of explanation types

plays an important factor where participants recognize the value of the various types and

subsequently had greater demand for them, resulting in higher application satisfaction; this created

higher demand and benefit than would have been predicted from Experiment 1. Though not in

demand when elicited, Inputs, Outputs, What If, What Else, and Certainty became particularly

desired when participants were informed or reminded about them.

5.6.4 VALLEY OF EXPECTATION

The elicited and solicited information demand measures indicate which explanation types are

desired and under what circumstances, but providing explanations matching these types in the

corresponding circumstance may lead to poorer intelligibility usefulness ratings instead. This is

particularly evident for Inappropriateness circumstances, but absent for highly Critical ones. This

suggests that when participants have a higher demand for intelligibility, they also expect better

explanations, and may rate explanations worse. However, when they become more desperate for

information (as in cases of high criticality), they readily accept the explanations, and rate them

more favorably. We refer to this drop then rise in expectation of explanation quality with respect to

information demand as the “valley of expectation” of intelligibility demand.

5.6.5 SATISFACTION VS. UNDERSTANDING

This work has explored the explanation types that users demand and that may satisfy them. We

compare and contrast our findings to our earlier work in Chapter 4 that explored how to improve

user understanding and trust of a context-aware intelligent system. Previously, we found that Why

and Why Not explanations were most effective, while interactive explanation types (How To and

What If), were less useful due to the difficulty of using them. In this study, we provide participants

86 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5
.7

 D
E

SIG
N

 R
eco

m
m

en
d

atio
n

s
 8

6

with various explanation types without involving any user interaction, so we avoid the confound of

difficult user interfaces and, in fact, find that How (To) and What If explanations should not be

neglected. We also found that even though Why and Why Not explanations are intuitive and

particularly good at improving understanding, users have higher expectations on the informational

quality of such explanations, and may be biased against appreciating them as much.

5.7 DESIGN RECOMMENDATIONS

We present some recommendations to developers of context-aware applications about which

explanation types to provide and under what circumstances. Developers can identify which

moderators and situations apply for their applications and then use the suggested

recommendations. Implementing all the types of intelligibility we investigated is excessive and may

even be detrimental. We present the different types and offer advice about when and how they

should be implemented (summary in Table 5.6 and Table 5.7).

Application. When users want information, they will tend to want application-centric information,

so, in general, more effort should be concentrated on providing information about the application’s

workings and mechanism than on the situation. Explanations about the application should also be

provided for applications that are at risk of being easily abandoned (low trust), and when the

application is uncertain (high risk of Inappropriateness) of its action.

Situation. Though users are less interested about what else is happening when the application

responds, there is moderate interest in increasing their real-world situational awareness (what

else). This would involve making applications sense more related events and contexts (e.g., for a

monitoring application, what is the historical trace of events before an anomaly) than their primary

function, and to reveal such knowledge to the user. This is more important in cases when the

application acts in highly critical situations.

Inputs. Users may only have a moderate interest in knowing more about the application’s input

sources or sensor readings, but if they perceive the application is heavily dependent on external

sources (high externality), they may want to know more about the inputs.

Outputs. In typical application use, users are not interested in the output alternatives. However,

they may suspect that the application is capable of more action than it is exhibiting. Providing

intelligibility explaining the output (action) capabilities of the application is particularly important

5.7 DESIGN RECOMMENDATIONS 87

5
.7

 D
E

SIG
N

 R
eco

m
m

en
d

atio
n

s
 8

7

for applications that make recommendations (such as tour guides), especially when users want to

seek better options. This should be provided automatically during early stages of usage to improve

users’ awareness.

Model. Most of the questions users want to ask are about an application’s conceptual model. This is

elaborated with the following explanation types.

Why. Answering why questions is an essential intelligibility requirement as such questions are very

common. However, users may also have high expectations that the why explanations are very

informative and a simple reason trace may not be sufficient to fully satisfy the users’ enquiries.

Visualizations could be used to augment a trace.

Why Not. Such explanations are good for high risk (high chance of inappropriateness)

circumstances and goal-supportive functions. However, we caution against implementing it in all

types of context-aware applications because generating these explanations for all alternative

possibilities may be non-trivial.

How. Users are somewhat interested in knowing how the application arrives at its outcomes, and

particularly like such explanations. However, how explanations can get cumbersome to produce for

applications with complex or learned logic. Users may have to use an interactive facility to specify

the constraints in which to obtain an action (as was the case in Section 4.6.4).

What If. This explanation type also involves user interaction in specifying input conditions and the

application simulating what would happen. We recommend what if explanations for non-

recommenders and more self-contained applications, for which users indicated strongest demand.

What Else. The what else explanation provides information closely related to the situation

explanation. The latter provides situational awareness, while the former provides more

information about what the application has done. Unsolicited demand for what else information is

low, but becomes significant when participants are aware of its availability. This indicates an

intrinsic need for this type of explanation. What else explanations are also important in critical

situations when users hope that the application is doing more to remedy or handle the critical

situation.

Visualization (Viz.). Given the general demand and effectiveness for this explanation type, we

recommend providing visualizations to augment explanations.

88 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5
.7

 D
E

SIG
N

 R
eco

m
m

en
d

atio
n

s
 8

8

Certainty. Providing certainty information is particularly important for applications that are goal-

supportive where users want to know how certain the application is in its decision or action, and

for applications that rely heavily on external sources and sensors. Certainty values that we provided

for this study were over 90%, but we suspect that if low certainty accuracies are reported to the

user, this may hurt their impression of the application. As applications can have varying levels of

certainty when in use, it may not be wise to always show certainty information.

Control. For context-aware applications, this explanation type would support users changing

parameters in the conceptual model that were originally set by the developers or learned by the

system. However, when users adjust such parameters, they may be making poorer choices than the

developers or the underlying machine learning algorithm, and may ultimately hurt the application

accuracy. Nevertheless, it may be important to allow users to change these settings, but caution

them about the danger of doing so.

5.7 DESIGN RECOMMENDATIONS 89

5
.7

 D
E

SIG
N

 R
eco

m
m

en
d

atio
n

s
 8

9

5.7.1 DESIGN PRESCRIPTION

We synthesize our findings and discussion to produce an initial attempt at a design prescription on

what and how to provide and implement explanation types for context-aware applications. We

propose a four-step procedure, and use UbiGreen [Froehlich et al., 2009] as an example application

to illustrate this and for external validity. UbiGreen is a mobile context-aware application that uses

a wearable sensor to recognize physical activity relating to sustainability (green) actions. The

application tracks the accumulation of green actions and displays a corresponding rewarding

wallpaper on the phone throughout the week. The steps are as follows:

I. Map application to moderating circumstances. Determine whether the application will

encounter high or low moderator rating values. Table 5.8 shows the mapping for UbiGreen.

II. Referring to Table 5.6 and Table 5.8, determine which explanation types to provide and

prioritize them in order of recommendation.

III. Consider issues (such as obtrusiveness and privacy) that would lead to trade-offs with

when and how to provide intelligibility. Table 5.9 lists concerns for UbiGreen, and Table 5.7

presents ways to provide explanation types.

IV. Summarize selections of explanation types with justifications. We provide Table 5.10 as a

template for this summary and filled it out with details for UbiGreen.

90 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5
.7

 D
E

SIG
N

 R
eco

m
m

en
d

atio
n

s
 9

0

Explanation
Type

 G
en

er
al

A
p

p
li

ca
ti

o
n

B

eh
ab

v
io

r
In

a
p

p
ro

p
ri

a
te

-
n

e
ss

Si
tu

at
io

n

C
ri

ti
ca

li
ty

A
p

p
li

ca
ti

o
n

G

o
a

l-
S

u
p

p
o

rt

R
o

le

A
p

p
li

ca
ti

o
n

R

e
co

m
m

e
n

d
e

r
R

o
le

N
u

m
b

er
 o

f
C

o
n

te
xt

E

x
te

rn
a

li
ti

e
s

Low High Low High Low High Low High Low High

A
p

p
li

ca
ti

o
n

Inputs

Outputs

M
o

d
el

Why

Why Not

How

What If

What Else

Visualization

Certainty

Control

Situation

 =recommended, =highly recommended

Table 5.6: Design prescription of which explanation types to implement depending on the

circumstances encountered by and functionality of the candidate context-aware application.

Provision Type Tradeoffs

Always on Obtrusive and space consuming. Only suitable for displays that are persistent
(e.g. peripheral or kiosk displays).

Automatic Context-Based Could be obtrusive for frequent events. May want to deactivate after a while.

Adaptive / Intelligent The system uses context to determine when to provide explanations.
Applications with poor accuracy may provide or omit providing explanations
at inappropriate times.

This can be used to determine the most crucial time to send privacy-sensitive
information.

On Demanda Always Least obtrusive, but may not expose user frequently enough to improve their
understanding.

On Demande Context-Based Allows users to get intelligibility features contextually.

Table 5.7: Reference of provision types to handle tradeoffs between providing intelligibility

and other issues.

5.7 DESIGN RECOMMENDATIONS 91

5
.7

 D
E

SIG
N

 R
eco

m
m

en
d

atio
n

s
 9

1

Moderator Lo Hi

Inappropriateness

Criticality

Goal-Supportive

Recommendation

Externalities

Table 5.8: Circumstances mapping for UbiGreen.

Issues Concern

Obtrusiveness Med

Personal Privacy Low

Table 5.9: Issues mapping for UbiGreen.

Explanation Type Provision Priority Details / Comments

Situation -

A
p

p
li

ca
ti

o
n

Inputs -

Outputs -

M
o

d
el

Why On
Demande

Med To support curiosity or deal with expectation
mismatches.

Why Not On
Demanda

High Needed to answer why certain activities were not
recognized and recorded.

How On
Demande

Med Providing this explanation type may be
controversial, since this information allows users to
game the system.

What If - Implementing this will also support gaming of the
system.

What Else -

Visualization (with
others)

 To augment textual explanations.

Certainty Always Med Though important to have, it is more appropriate to
show certainty at the event level (e.g. detection of
various activities), than at the cumulative level (i.e.
wall paper display of progress).

Control On
Demanda

Med Expose user model and sensor thresholds to allow
tweaking.

Table 5.10: Design prescription for UbiGreen.

92 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5
.8

 L
IM

IT
A

T
IO

N
S 9

2

5.8 LIMITATIONS

We acknowledge three limitations of our approach. First, we do not claim our list of moderating

circumstances to be comprehensive; there are other explanation types that could be important to

context-aware applications (e.g., history, similar examples), and other circumstances (e.g., more vs.

less autonomous systems). Second, our participants had to imagine using the various applications

through video and text. We used this approach to garner opinion from a larger pool of participants

and to investigate a range of multiple context-aware applications. However, this does not mitigate

the need to investigate the demand for intelligibility features in deployed systems, where users can

get real-time feedback, have internal motivations and goals, and can draw on past experience of

using the system. Third, since we drew our participants from the Internet, and a relatively new

platform, Mechanical Turk, our population is not a representative sample of the general public (see

[Schonlau et al., 2006]). Our sample (ethnicity 32% Asian / Pacific Islander, education 37% 4-year

college educated, 18% with post-graduate degree; 27% students) is more representative of an

internet-savvy population, and should be representative of technology early adopters. This

population is appropriate, as we are dealing with the adoption of novel technologies.

5.9 CONCLUSIONS AND FURTHER WORK

We have described two experiments about a wide range of scenarios with four context-aware

applications to assess user demand for intelligibility and the impact on user satisfaction when those

demands are met. From a question asking perspective, we have elicited a set of explanation types

(Application, Situation, Inputs, Outputs, Model, Why, Why Not, How, What If, What Else, Certainty,

Control) users of context-aware systems may be interested in, and several circumstances that may

moderate when this demand changes (Application Behavior Inappropriateness, Situation Criticality,

Application Goal-Supportiveness, Recommendation Role, Number of Externalities). Our findings

suggest that some explanation types (e.g., Why, Certainty, Control) should be made available for all

context-aware applications, while some are more useful for specific contexts (e.g., Why Not for goal-

supportive tasks). We believe that context-aware application developers can take these

recommendations on when and how to provide different types of intelligibility features and

dramatically improve user satisfaction with, and acceptance of, their context-aware applications.

We have found that even if certain explanation types are helpful to improve users’ understanding,

they may not necessarily want or seek them, and be more satisfied. We would like to investigate the

5.9 CONCLUSIONS AND FURTHER WORK 93

5
.9

 C
O

N
C

L
U

SIO
N

S an
d

 F
u

rth
er W

o
rk

 9
3

interactions involved in increasing understanding and satisfying information demands to provide a

more cohesive framework for intelligibility. We wish to test our findings in a field study with a

deployed intelligible context-aware application. As an intermediate step, we designed, developed

and evaluated, Laκsa, an intelligible context-aware mobile application (described in Chapters 7 and

9) as a research platform. This application provides 10 of these explanation types allowing us to

gain richer insights into how and when users interact with each type, and how that may improve

their understanding of the application behavior.

To support the implementation of Laκsa and other intelligible context-aware applications, and to

make it easier to implement explanations that can explain the broad range of question types we

introduced in this Chapter, we developed the Intelligibility Toolkit, which we describe in Chapter 6.

95

6 INTELLIGIBILITY TOOLKIT

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2010). Toolkit to Support Intelligibility in Context-Aware

Applications. In Proceedings of the 12th ACM international Conference on Ubiquitous

Computing (Copenhagen, Denmark, September 26 - 29, 2010). Ubicomp '10. ACM, New York,

NY, 13-22.

ABSTRACT. Context-aware applications should be intelligible so users can better understand how

they work and improve their trust in them. However, providing intelligibility is non-trivial and

requires the developer to understand how to generate explanations from application decision

models. Furthermore, users need different types of explanations and this complicates the

implementation of intelligibility. We have developed the Intelligibility Toolkit that makes it easy for

application developers to obtain 12 types of explanations (e.g., Certainty, Why, Why Not, What If,

How To) from the several popular decision models (e.g., rules, decision trees, naïve Bayes, hidden

Markov models) of context-aware applications. We describe its extensible architecture, and the

explanation generation algorithms we developed. We validate the usefulness of the toolkit with four

canonical applications that use the toolkit to generate explanations for end-users.

6.1 INTRODUCTION

Having elicited what questions users are interested to ask of context-aware applications in Chapter

5, we have found a reasonably large set of explanation types that applications may provide to be

intelligible. However, it would be a substantial effort for developers to implement these

explanations for all context-aware applications for which they would like to provide intelligibility.

To support the implementation of intelligibility, and lower the barrier to providing them in context-

aware applications, we developed the Intelligibility Toolkit. Its focus is to provide the automatic

96 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

 IN
T

R
O

D
U

C
T

IO
N

 9
6

generation and processing of explanations from the underlying context model of a context-aware

application. The Intelligibility Toolkit provides an extensible, standardized framework with which

the explanations can be (i) selected, (ii) queried, (iii) generated, (iv) post-processed, and (v)

presented. Our contributions are:

1. An architecture for generating a wide range of 12 explanation types drawn from Chapter 5.

Our current implementation extends the Context Toolkit, a popular toolkit for building

context-aware applications [Dey, Abowd, and Salber, 2001] and supports at least 10 popular

inference models (e.g., rules, decision trees, naïve Bayes, hidden Markov models).

2. A library of reference implementations of explanation generation algorithms we developed

to extract any of the explanation types from any of the inference models we support.

3. Automated support for the recommendations from Section 5.7 that promotes good design

practice by making the most contextually appropriate explanations easy for developers to

acquire. Applications can automatically obtain the most appropriate explanations given the

contextual situation.

As we will show, these contributions satisfy the requirements laid out by Olsen [2007] for adding

value to user interface architectures: (i) importance, (ii) problem not previously solved, (iii) has

generality across a range of explanation types and decision model types, (iv) reduces solution

viscosity through increased flexibility for rapid prototyping of explanations, (v) empowers new

design participants by making it easier to provide explanations, and (vi) demonstrates power in

combination by supporting combinations of explanation types as building blocks.

This chapter is organized as follows: we review context-aware applications published in recent

years from a number of premier conferences to ascertain popular inference models. Then we

present a discussion of the explanation we seek to support. Next, we provide an overview of the

toolkit architecture and components, and implementation details and algorithms. We validate the

toolkit through demonstration applications and the application of Olsen’s infrastructure guidelines.

We then discuss other toolkit features that would be valuable to support, and compare the toolkit

with related work. We end with discussing opportunities for new research given the toolkit.

We have also included extensive appendices to this chapter, describing where the toolkit may be

downloaded (Appendix A), detailing more Explainer explanation generation algorithms (Appendix

B), and providing a tutorial on how to build an intelligible context-aware application with the

Intelligibility Toolkit (Appendix C).

6.2 INFERENCE MODELS IN CONTEXT-AWARE APPLICATIONS 97

6
.2

 IN
F

E
R

E
N

C
E M

o
d

els in
 C

o
n

text-A
w

are A
p

p
licatio

n
s

 9
7

6.2 INFERENCE MODELS IN CONTEXT-AWARE APPLICATIONS

In [Lim and Dey, 2010], we identified the most popular context-aware inference models to support

in the Intelligibility Toolkit. We reviewed literature from three major conferences over at least five

years: CHI 2003-2009, Ubicomp 2004-2009, and Pervasive 2004-2009. We found the four most

popular models among the 114 context-aware applications reviewed: rules, decision trees, naïve

Bayes, and hidden Markov models (see Figure 6.1).

Key: Decision Tree (DT), Naïve Bayes (NB), Hidden Markov Models (HMM),

Support Vector Machines (SVM), k-Nearest Neighbor (kNN)

Figure 6.1: (Left) Counts of model types used in 109 of 114 reviewed context-aware

applications from 2003-2009. (Right) Counts for 50 recognition applications; classifiers are

used most often for applications that do recognition.

In this chapter, we extend the Intelligibility Toolkit in [Lim and Dey, 2010] to support more types of

inference models to provide developers with even more flexibility in choosing machine learning

classifiers and yet retain intelligibility features in the toolkit.

6.2.1 LOGIC RULES

We classify applications as rule-based if the authors state that their applications were based on

Boolean rules (e.g., if/else logic; AND and OR combinations), or that they were based on simple

mapping associations of IDs to entities (e.g., RFID). Developer specified rules are the most popular

decision models used in context-aware applications. They are popular in the following domains:

activity recognition (e.g., [Tsukada et al., 2004]), adaptation / personalization (e.g., [Terada et al.,

2004]), awareness / monitoring (e.g., [Dey and Guzman, 2006]), reminders (e.g., [Borriello et al.,

2004]), location guides (e.g., [Newcomb et al., 2003]), and persuasion (e.g., [Froehlich et al., 2009]).

0

10

20

30

40

50

60

70

R
u

le
s

D
T

N
B

H
M

M

SV
M

k
N

N

All Applications

0

5

10

15

R
u

le
s

D
T

N
B

H
M

M

SV
M

k
N

N

Recognition Applications

98 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.2

 IN
F

E
R

E
N

C
E M

o
d

els in
 C

o
n

text-A
w

are A
p

p
licatio

n
s

 9
8

Also, the number of rule-based toolkits for context-aware applications indicates the popularity of

rules (e.g., [Assad et al., 2007; Bardam, 2005; Dey and Newberger, 2009; Gu et al. 2005]).

6.2.2 DECISION TREES

Decision tree classifiers (e.g., C4.5 [Quinlan, 1993], Random Tree of a Random Forest [Breiman,

2001]) learn a decision tree from a dataset. A decision tree infers an output by deciding on a

specific input feature at each node as it traverses down and returns a decision once it reaches a leaf.

Decision trees are popular for their simplicity of use, interpretability, and good runtime

performance. Decision trees are popular in applications to recognize: identity / ability (e.g., [Chang

et al., 2009]), interruptibility (e.g., [Avrahami and Hudson, 2006; Tullio et al., 2007]), mobility (e.g.,

[Zheng et al., 2008]), etc.

6.2.3 FUNCTIONS

A simple form of functional relations is the direct of one or more inputs to an output. For example,

adjusting the color of an ambient display based on the current price of energy (Ambient Energy

Orb1), or adjusting the length of a string based on the arrival times of buses (BusMobile [Mankoff et

al., 2003]). Other than programmer-defined functions, functions can also be learned using machine

learning algorithms.

Linear Regression learns a linear equation relating input features to a continuous-valued output.

Linear regression has been used to model: physical energy expenditure from wearable sensors (e.g.,

[Albinali et al., 2010]), step count prediction (e.g., [Sohn et al., 2006]), and in combination with

other classification methods for domestic utility inference (e.g., HydroSense [Froehlich et al., 2009],

GasSense[Cohn et al., 2010]).

Logistic Regression is similar to linear regression, but instead learns a sigmoid function for use in

classification instead of regression. Logistic regression has been used to model: availability from a

mobile phone (e.g., [Rosenthal, Dey, and Veloso, 2011]), physical activity monitoring (e.g, [Sun,

Zhang, and Li, 2011], and dietary activity recognition with wearable sensors (e.g., [Amft and

Trӧster, 2008]).

Support Vector Machine (SVM) classifiers are a popular machine learning classifiers that use a

maximum-margin hypothesis to learn a linear equation relating input features to classify a class

1
 Ambient Devices. http://www.ambientdevices.com/products/what-is-ambient. Retrieved 3 April 2012.

http://www.ambientdevices.com/products/what-is-ambient

6.2 INFERENCE MODELS IN CONTEXT-AWARE APPLICATIONS 99

6
.2

 IN
F

E
R

E
N

C
E M

o
d

els in
 C

o
n

text-A
w

are A
p

p
licatio

n
s

 9
9

value. A popular method to train SVMs is Sequential Minimal Optimization (SMO) [Platt, 1998].

SVMs have been used to model: eye movement tracking for activity recognition (e.g., [Bulling et al.,

2009]), visual memory recall (e.g., [Bulling and Roggen, 2011]) physical activity recognition (e.g.,

[Murao et al., 2009]), and gesture recognition using power-lines (e.g., [Cohn et al., 2011]).

6.2.4 BAYESIAN MODELS

Several inference models use Bayesian inference to determine the output given some input values.

Generally, they use Bayesian probability to determine the posterior probability of an outcome value

due to a prior probability and likelihoods due to some variables. These variables provide evidence

for the inference.

Naïve Bayes is a probabilistic classifier that applies Bayes theorem to model the probability of the

output of a system given the inputs. It applies a naïve assumption that features are conditionally

independent of one another. Training and runtime performance are fast. Naïve Bayes classifiers

have been used to recognize: physical activity (e.g., [Chang et al., 2007]), domestic activity (e.g.,

[Tapia et al., 2004]), interruptibility (e.g., [Tullio et al., 2007]).

Hidden Markov models (HMM) [Rabiner, 1989] are Bayesian probabilistic classifiers that model

the probability of a sequence of hidden states given a sequence of observations (input features with

respect to time). First-order Markov models assume that only the previous state affects the next,

and only the current state influences the current observation. HMMs have been used to model:

physical (e.g., [Chang et al., 2007]) and domestic activity (e.g., [van Kasteren et al., 2008]), gaze (e.g.,

[Bulling et al., 2008]).

Bayesian Networks (also called Bayes Net, BN) are more general Bayesian probabilistic classifiers

that can model more dependencies between variables in the model. BNs have been used to model:

family transportation coordination [Davidoff et al., 2011], activity tracking of multiple home

occupants (e.g., [Wilson and Atkeson, 2005]), medication prompting (e.g., [Vurgun, Philipose, and

Pave, 2009]), and social sensing for epidemiological behavior change [Madan et al., 2010].

Explaining BNs have been extensively researched especially in the medical informatics literature

(e.g., see [Lacave and Díez, 2002]). As such, we do not currently support explaining BNs in the

Intelligibility Toolkit.

100 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.2

 IN
F

E
R

E
N

C
E M

o
d

els in
 C

o
n

text-A
w

are A
p

p
licatio

n
s

 1
0

0

6.2.5 SIMILARITY

Another approach to inferring an output value is to determine how similar the current inputs are to

previously seen examples. This is a common approach for recommender systems that recommend

based on items in which the user had expressed interest, and case-based reasoning systems, which

refer to specific cases. We describe two common similarity-based models.

k-Nearest Neighbors (kNN) is an instance-based learning method that classifies outcomes based

on the majority class value of the instances in the training set that are nearest to the test instance.

kNN has been used to model: context-based mobile search [Lane et al., 2010], single-point

electronic device sensing [Gupta, Reynolds, and Patel, 2010], EEG-based attention recognition [Li et

al., 2011], and physical activity recognition [Bicocchi, Mamei, and Zambonelli, 2010].

k-Means Clustering is an unsupervised learning method to group data instances into k clusters

based on how similar the instances are based on their input features. On its own, clustering does

not classify a label or output value. However, k-means has been used together with supervised

learning classifiers to model, e.g., smart phone energy consumption [Oliver and Keshav, 2011]. We

focus on supervised instead of unsupervised methods, and do not currently support explaining k-

means clustering in the Intelligibility Toolkit.

6.2.6 ENSEMBLE INFERENCE MODELS

Ensemble meta-classifiers are commonly used to improve the accuracy of classifiers. We describe

two popular ones.

Bootstrap Aggregation (also called Bagging) [Breiman, 1996] resamples a training dataset with

replacement to train multiple versions of a base classifier, which subsequently are used to vote on

an inference. Bagging has been used to model: cough detection using microphones [Larson et al.,

2011], cooperative people-centric inference from data of multiple people [Lane et al., 2009], and

transportation mode [Zheng et al., 2010].

Adaptive Boosting (AdaBoost) [Freud and Shapire, 1995] is a popular Boosting method that

iterates a base classifier multiple times by updating the training dataset of each iterated classifier to

emphasize wrongly classified instances. Inference is performed through a weighted vote of the

classifier iterations. AdaBoost has been used to model: physical activity recognition with boosted

decision stumps (e.g., [Lester, Choudhury, and Borriello, 2009]), hand gesture recognition with

6.3 EXPLANATION QUESTION TYPES 101

6
.3

 E
X

P
L

A
N

A
T

IO
N

 Q
u

estio
n

 T
yp

es
 1

0
1

boosted kNN (e.g., [Fukui et al., 2011]), mobility mode inference with boosted logistic regression

(e.g., [Sohn et al., 2006]).

Several applications also combine rules for higher level logic with classifiers for lower level

recognition (e.g., UbiFit [Consolvo et al., 2008], UbiGreen [Froelich et al., 2009], Laκsa [Lim and Dey,

2011a]).

6.3 EXPLANATION QUESTION TYPES

As we focus on these four decision models, we need to generate the various explanations that users

want to receive. In Chapter 5 we enumerated ten explanation types that are important to end-users

of context-aware applications, and in this work we provide mechanisms to automatically extract

eight of them from the applications. We review the different explanation types and their definitions.

6.3.1 SYSTEM-BASED EXPLANATION TYPES

If we represent a context-aware application as sensing inputs, maintaining system state, and

producing an output, we can identify a set of explanations that are independent of the decision

model and how it makes its decisions.

1. What explanations inform users of the current (or previous) system state in terms of output

value; this makes the application state explicit. If the application performs multiple actions

per state, the user may ask What Else to learn of other actions or services that the

application may have performed simultaneously.

2. When explanations inform users when the inference made, i.e., the time at which the

context changed its value.

3. Inputs explanations inform users what input sensors (e.g., thermostat, GPS coordinates)

and information sources (e.g., weather forecast, restaurant reviews website) that the

application employs so that users can understand its scope. Input values are obtained by

recursively asking What on the Inputs. When a user asks a why question, she may naively be

asking for the Inputs state. Inputs should be described by their name and possibly also with

some description of what they mean or refer to.

4. Outputs explanations inform users what output options the application can produce. This

lets users know what it can do or what states it can be in (e.g., activity recognized as one of

three options: sitting, standing, walking). This helps users understand the extent of the

102 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.3

 E
X

P
L

A
N

A
T

IO
N

 Q
u

estio
n

 T
yp

es
 1

0
2

application’s capabilities. Outputs explanations can also be used to help ask model-based

explanations Why Not and How To (see below) by allowing the user to select an alternative

desired output.

5. What If explanations allow users to speculate what the application will do given a set of

user-set input values.

6.3.2 MODEL-BASED EXPLANATION TYPES

Explanations regarding the inference mechanism of the decision making process in the application

are model-dependent, and would vary depending on the model used.

6. Certainty explanations inform users how (un)certain the application is of the output value

produced. They help the user determine how much to trust the output value.

7. Why explanations inform users why the application derived its output value from the

current (or previous) input values. For rule-based systems, this returns the conditions

(rules) that were true such that the output was selected.

In terms of model generated explanations, a Why question asks for the reasoning trace(s)

for the rule(s) that triggered the inferred value, or evidence for why the inferred value was

inferred over alternative values

8. Why Not explanations inform users why an alternative output value was not produced

given the current input values. They could provide users with enough information to

achieve the alternative output value, but not necessarily so (e.g., the Weights of Evidence

style of explanation; see Section 6.4.2).

In terms of model generated explanations, a Why Not question asks for a pairwise

comparison between the inferred output value and an alternative output value.

9. How To explanations answer the question "In general, how can the application produce

desired output value X?" This contrasts with Why that asks in regards to a specific event.

Occasionally, providing a comprehensive How To explanation is infeasible, since there could

be infinite solutions. There are other variants of How To questions that can provide a finite

and tractable number of reasons, such as How To If, where the Input state is constrained

when asking How To.

6.3 EXPLANATION QUESTION TYPES 103

6
.3

 E
X

P
L

A
N

A
T

IO
N

 Q
u

estio
n

 T
yp

es
 1

0
3

6.3.3 APPLICATION-BASED EXPLANATION TYPES

The following explanation types depend on the application and sensed or inferred context and are

thus application-dependent.

10. Situation explanations seek to demonstrate or illustrate what was happening to provide a

ground truth of what was being inferred, e.g., playing an audio clip of what was heard to

substantiate the application’s sound inference. The manifestation of this explanation will

depend on the physical context being explained.

11. Description explanations provide textual descriptions for teaching terminology and

concepts of terms, features, or feature values [Swartout and Smoliar, 1987]. With longer

text, description explanations can also support the design rationale explanation type of

Haynes et al. [2009] and justification explanation type of Swartout [1983].

We omit explaining Control because this is already covered by Enactor Parameters [Dey and

Newberger, 2009]. Description explanations may also be used to explain how to Control the

application.

6.3.4 HISTORY EXPLANATION

History explanations inform users about the application state at a previous time. This is not truly a

distinct explanation type, but a means to retrieve historical explanations of the aforementioned

explanation types. Rather than explaining about the current inference, History explanations allow

the user to learn about a past historical inference. Therefore, this may simply provide a historical

What explanation, or provide a means to ask other questions and obtain explanations (e.g., Why,

Why Not, Inputs) about that time instance.

To support History explanations, we require the application to store and retrieve historical

information at the application level or deeper at the system level. Furthermore, assuming that the

inference models are static, i.e., do not change over time, Historical explanations can then be

generated by applying Explainers to the inference model with the specific historical state. If the

inference model changes over time, then historical versions of the model will also need to be stored

and retrieved to generate the corresponding explanation of the historical event.

Currently, the Intelligibility Toolkit does not specify any storage mechanisms, though the Context

Toolkit does support storage of context information. We have developed an intelligible application

104 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.4

 E
X

P
L

A
N

A
T

IO
N

 Styles o
f M

o
d

el-B
ased

 E
xp

lan
atio

n
s

 1
0

4

prototype, Laκsa (see later Sections 7.2 and 9.3), which also supports storing and retrieving of

historical contexts, and so supports historical explanation types.

6.4 EXPLANATION STYLES OF MODEL-BASED EXPLANATIONS

The differences in inference models affect how an explanation may be generated. We support two

styles of explanations in the Intelligibility Toolkit that can be generated: rule traces and weights of

evidence.

6.4.1 RULE TRACES

Rule traces pertain to the trace or line reasoning content type of explanation described in [Gregor

and Benbasat, 2001]. They trace the line of reasoning that was executed to explain why an inference

was made. Conveying traces that were not executed explain why an alternative inference was not

made. For a logic inference model, a trace is just a conjunction (AND) of logic conditions. The

Intelligibility Toolkit provides Rule Trace explanations for Rules and Decision Tree inference

models.

6.4.2 WEIGHTS OF EVIDENCE

Many models do not make inferences using rules (e.g., naïve Bayes, SVM) and so rule traces are not

relevant for explaining them. Instead, we employ the Weights of Evidence concept also used in

[Kulesza et al., 2009; Poulin et al., 2006; Madigan, Mosurski, and Almond, 1996; Mozina et al., 2004].

This considers that the model computes a total evidence for each possible outcome value that may

be inferred, and that this total evidence is due to a sum of atomic weights of evidence due to various

factors. In the inference models we consider for the Intelligibility Toolkit, we consider input

features (e.g., sound volume, frequency) as the main factors. Therefore, the weights of evidence

explanation attempts to inform the user how much evidence each factor contributes towards or

against the inference.

6.5 REQUIREMENTS

We seek to provide an Intelligibility Toolkit that supports the automatic generation of the

aforementioned explanation types from various inference models. Context-aware applications built

with the toolkit freely receive the capability of providing these generated explanations to end-users.

6.5 REQUIREMENTS 105

6
.5

 R
E

Q
U

IR
E

M
E

N
T

S 1
0

5

The toolkit is designed to satisfy requirements inspired from Olsen's writings about infrastructure

evaluation [Olsen, 2007]:

R1) LOWER BARRIER TO PROVIDING EXPLANATIONS

With the toolkit, application developers do not need to know how to generate explanations from

the most popular models used in context-aware applications. Explanation generation algorithms

and heuristics are encapsulated into the toolkit.

R2) FLEXIBILITY OF USING EXPLANATIONS

Given the simplicity of invoking various explanation types, all types can be generated with the same

level of ease. Developers can then concentrate on choosing the most suitable explanation for their

applications and users. This supports rapid prototyping of providing explanation solutions to see

which works best.

R3) FACILITATE APPROPRIATE EXPLANATIONS AUTOMATICALLY

Even with this rapid prototyping support, we encourage the use of appropriate explanations,

particularly following the recommendations from Section 5.7 of how different explanation types are

more appropriate in various contexts.

R4) SUPPORT COMBINING OF EXPLANATIONS

Some explanation types depend on other types to give a complete explanation to the user. For

example, a Why Not explanation needs to inform the user of the set of Output values so that she

would ask only about what is possible in the application. Other than nesting explanations,

explanations can also be combined to enhance user experience. For example, combining the How To

and What If explanations can expedite users in finding good examples to learn how an application

works (e.g., see Section 6.10.6.3).

R5) GENERALIZABILITY

Although the toolkit currently covers a range of eight explanation types, four popular decision

models and methods for simplifying and presenting explanations, like any toolkit, it is not

comprehensive. The toolkit can be extended to support:

106 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.6

 T
O

O
L

K
IT A

rch
itectu

re
 1

0
6

a) New explanation types and new methods to explain the supported models (e.g., competing

methods to explain naïve Bayes are presented in [Mozina et al., 2004; Poulin et al. 2006;

Robnik-Šikonja and Kononenko, 2008]),

b) New algorithms for explaining currently unsupported inference model types (e.g., SVM,

clustering),

c) New heuristics for post-processing explanations,

d) New presentation styles for providing explanations, and

e) New heuristics for selecting explanations to provide.

6.6 TOOLKIT ARCHITECTURE

The Intelligibility Toolkit consists of four types of functional components, and three types of

structural components. The functional components implement processes for generating

explanations (Explainer), simplifying or reducing them (Reducer), and rendering or presenting

them (Presenter). The structural components support the encapsulation and transport of

explanations (Explanation Expression), and questions or querying (Query). Figure 6.2 shows how

these components relate to one another in a pipeline to produce explanations for end-users to

consume.

Figure 6.2: Architecture of the Intelligibility Toolkit showing functional and structural

components.

Reducer

Query Explainer

Full
Explanation

Presenter
Reduced

Explanation

Rendered
Explanation

Querier

Selector

6.6 TOOLKIT ARCHITECTURE 107

6
.6

 T
O

O
L

K
IT A

rch
itectu

re
 1

0
7

To provide system-based explanations of context inference, we implemented the Intelligibility

Toolkit, extending the Enactor framework [Dey and Newberger, 2009] of the Context Toolkit [Dey,

Abowd, and Salber, 2001]. Enactors contain the application logic of the context-aware application

and contain References that monitor the state of input Widgets.

For the rest of this section, we describe the components of the Intelligibility Toolkit, focusing on

how to use them as library programmers (i.e., programmers who will use the Intelligibility Toolkit

components to make their applications intelligible [Hudson, 1997]). In later sections, we will

describe how toolkit programmers can extend the Intelligibility Toolkit to develop their own

components.

6.6.1 QUERY

To have an explainer generate an explanation, the program can pass a Query to the Explainer.

Queries encapsulate information about which context the user is interested to ask about, which

question the user is asking, and about which time the user is asking. The queries may be about

The base Query takes the current inputs and output values and is used for explanation types What,

Why, and Certainty. AltQuery extends Query to include an alternative target output value to

facilitate explanation types Why Not, and How To. InputsQuery extends Query to allow the

setting of input values, supporting What If explanations. Query can be extended to employ

different constraining mechanisms, such as querying based on time.

6.6.2 EXPLAINER

The Explainer is the main component of the Intelligibility Toolkit that contains the mechanisms and

algorithms to generate explanations based on the inference model. There is a generic Explainer

that generates system-based explanations types, and subclasses of Explainer for each of the

inference model supported. System-based explanations are generated using the architecture of the

Enactor framework to provide the corresponding information. Model-dependent explanations are

generated from different Explainers for each model. Each Explainer takes a Query and the

application state as input, and generates the explanation as an Explanation Expression data

structure. Given the two styles of explanations supported in the Intelligibility Toolkit, we provide

Explainers for Rule Traces and for Weights of Evidence. See Section 6.10 for some explanation

generation algorithms.

108 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.6

 T
O

O
L

K
IT A

rch
itectu

re
 1

0
8

6.6.3 EXPLANATION STYLES AND DATA STRUCTURES

Explanations are generated in a standard format so that they can be reused in other components of

the Intelligibility Toolkit. However, they differ depending on the explanation style.

6.6.3.1 RULE TRACES IN NORMAL FORM

We define a rule trace explanation in terms of one or multiple reasons (e.g., multiple reasons for

Why Not). Each reason can be a singular conditional (e.g., one certainty value for a Certainty

explanation) or a conjunction (e.g., multiple conditionals for a Why explanation). The conditional is

the atomic unit of an explanation (e.g., ,). Furthermore, there

can be negated condition literals (e.g.,).

Formally, for standardization, we define explanations in Disjunctive Normal Form (DNF), i.e. a

disjunction (OR,) of conjunctions (AND,) of condition literals (see example in Figure 6.6, Right),

or Conjunctive Normal Form (CNF), i.e. a conjunction of disjunctions of condition literals (see

example in Figure 6.6, Middle). The standardization of explanation information supports

Requirement R4 such that there is a consistent way to pipe different explanation types to other

components in the toolkit.

6.6.3.2 WEIGHTS OF EVIDENCE AS A MULTI-DIMENSIONAL ARRAY

For a simple inference model, we can attribute the total evidence for an inference as a sum of each

atomic weight of evidence due to an input feature. Note that the evidence is a continuous numeric

value, while the input feature value may be nominal or numeric. This set of evidence just requires a

one-dimensional array to represent the sum of weights.

However, some more complex inference models may have more factors that may ascribe evidence

for the inference. For example, the HMMs also model time sequence, so weights of evidence will be

due to input features over a range of time steps. In this case, we have time as a second dimension.

Another example is using an ensemble meta-classifier that has multiple base classifiers, each

performing an inference before the meta-level classification. In that case, we have classifier as the

second dimension. Explanations of these inference models will require a two-dimensional array to

represent the sum of weights of evidence.

In general, there may be any number of dimensions for the weights of evidence, so we represent it

using a multi-dimensional array (also called multi-array). The sum of weights gives the total

6.6 TOOLKIT ARCHITECTURE 109

6
.6

 T
O

O
L

K
IT A

rch
itectu

re
 1

0
9

evidence for the explanation, and each element gives an atomic unit of evidence. This is beneficial to

using a one-dimensional array as we do not lose information from each dimension.

6.6.4 REDUCER

Explanations generated from Explainers may be unwieldy to an end-user and lead to information

overload. Reducers simplify the explanation data structure so that the explanation is easier for

users to interpret. Reducers can also be used to post-process explanations before presenting them,

e.g., stripping privacy-sensitive information, when explaining contexts to a social contact. Given the

two styles of explanations the Intelligibility Toolkit has two kinds of reducers, one for rule traces

(see Section 6.11.1) and another for weights of evidence (see Section 6.11.2).

6.6.5 PRESENTER

Explainers produce explanations in the form of Explanation Data Structures, and Presenters

render them in a form presentable to end-users, e.g., as text, visualization, or interactive graphical

interface. Developers can build different Presenters to suit their target user and device form factor.

Furthermore, even if the explanation is large, a developer may elegantly present it (e.g., see Figure

6.12), instead of reducing it.

6.6.6 QUERIER

Queriers are to Queries what Presenters are to Explanations: they provide interfaces to

display questions that end-users may ask. This may involve using text input, drop-down menus,

buttons, etc., and specific implementations also depend on the platform the application is deployed

on, desktop, mobile, etc.

Rather than let end-users manually ask for explanations on demand, it may be useful to

automatically provide the explanations (see Table 5.7). Queriers that show explainers automatically

do not need to provide any user interface but just generate Queries to pass to Explainers.

6.6.7 SELECTOR

While the application may provide a range of explanations using the Intelligibility Toolkit, it may

not be appropriate or helpful to provide all explanations all the time. As we will show in Chapter 8,

providing explanations when the application is uncertain can harm a user’s impression of the

application. We have also seen how users prefer to ask different question types under various

110 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.7

 IM
P

L
E

M
E

N
T

A
T

IO
N

 o
f th

e In
telligib

ility T
o

o
lk

it 1
1

0

circumstances (Chapter 5). Therefore, it is important to allow the application to selectively provide

explanations under appropriate conditions. In fact, this contextual selectivity of intelligibility is a

specialized form of context-awareness. The Intelligibility Toolkit provides Selectors to support this

need for context-dependent intelligibility.

Selectors take contextual factors as inputs, and selects appropriate explanation types that should be

provided. They may select none, one, or multiple explanation types (i.e., any number). When

selecting multiple explanation types, they may also rank the selections to prioritize them. To

facilitate automatic provision of explanations, Selectors may

Selectors may also be extended to select Reducers to apply after Explainers generate explanations.

This way the application can control the level of detail to provide in explanations. This can facilitate

showing more explanation detail when useful (see Chapter 9), and showing less explanation detail

when too overwhelming to end-users (see Sections 7.3.1 and 7.10.1).

6.7 IMPLEMENTATION OF THE INTELLIGIBILITY TOOLKIT

We implemented the Intelligibility Toolkit in Java (JDK 7) with extensive use of generics. The

Intelligibility Toolkit does not perform inference on its own; its main purpose is to explain the

inference. Hence, it depends on third-party libraries for inference models. The Explainer

component depends on the inference model being explained. System-based explanations depend on

the system infrastructure for the inference. We implemented base Explainers for the Enactor

framework and also for the WEKA machine learning toolkit [Hall et al., 2009]. We implemented a

Rule explainer to explain rules in Enactors, and several explainers to explain classifications in

WEKA classifiers.

The Intelligibility Toolkit also does not enforce any particular user interface framework or

platform, and focuses on explanation generation. Therefore, specific implementations of the

Presenter component depend on the platform on which the context-aware application is deployed.

We have implemented Presenters for desktop graphical user interfaces (GUI) using the Java Swing

API, and for mobile applications using the Android 2.2 API.

The Intelligibility Toolkit library binary and source code is downloadable from

http://www.contexttoolkit.org. We have also provided documentation and tutorials for developers.

http://www.contexttoolkit.org/

6.7 IMPLEMENTATION OF THE INTELLIGIBILITY TOOLKIT 111

6
.7

 IM
P

L
E

M
E

N
T

A
T

IO
N

 o
f th

e In
telligib

ility T
o

o
lk

it 1
1

1

In the next few sections, we describe of how the Intelligibility Toolkit is integrated with the Context

Toolkit, implementation details of its core components, and how to extend each type of component.

6.7.1 EXTENDING THE ENACTORS FRAMEWORK OF THE CONTEXT TOOLKIT

The Context Toolkit was originally developed by Dey and colleagues to support the development of

context-aware applications by abstracting the connectivity issues of devices in a distributed

environment through the use of a discovery mechanism (blackboard) and by developing a widget

paradigm for context-aware applications to abstract the building of context-awareness functionality

and their use. We added support for machine learning and an XML-based method to define widgets

and enactors. See documentation at http://www.contexttoolkit.org for more details. In this section,

we describe some of the components of the Context Toolkit necessary to know how we have

extended it for use in the Intelligibility Toolkit.

Figure 6.3: Architecture of Enactor framework of the Context Toolkit updated to include

output values and In and Out Widgets.

6.7.1.1 WIDGETS

Context Widgets are responsible for separating the details of sensing context from actually using

it. They abstract away the details of how the context is sensed from applications and other context

components that need the context. Widgets here can be thought of as similar to GUI widgets (e.g.,

text fields, spinners), but applied to sensors and actuators that would be common in ubiquitous

computing systems. Each context widget is responsible for some small set of contexts that is

captured from a (hardware or software) sensor.

Widgets have Attributes to represent contextual information. An Attribute represents a type of

context, containing the name of the context and the data type of the context (float, int, string, etc).

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Reference

Reference

Out-Widget

Attribute

Attribute

Attribute

Attribute

Context
Outputs

Service

Attribute

Attribute

Attribute

Attribute

FuncDesc

FuncDesc

Output
Value

Output
Value

Output
Actions

FuncDesc

FuncDesc

http://www.contexttoolkit.org/

112 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.7

 IM
P

L
E

M
E

N
T

A
T

IO
N

 o
f th

e In
telligib

ility T
o

o
lk

it 1
1

2

Attributes are used to describe context components, and to specify what context a component is

interested in. AttributeNameValue extend Attribute to also encapsulate the value of the attribute.

There are also Interpreters and Aggregators, but we leave it to the diligent reader to read the

original papers describing them (e.g., [Dey, 2000; Dey, Abowd, and Salber, 2001]).

6.7.1.2 SERVICES

While widgets contain information about context state, they can also encode behavior, through

Services. Each Service object contains a service name and a FunctionDescriptions object

that describes what the service does.

6.7.1.3 ENACTORS

Introduced into the Context Toolkit by Dey and Newberger [2009], Enactors encapsulate the

application logic of context-aware applications. They contain EnactorReferences that specify

rules for matching the state of input Widgets. Each EnactorReference contains a rule and is

triggered when its rule is satisfied. This is managed automatically by the discovery mechanism of

the Context Toolkit. Enactors provide basic support for Intelligibility (with EnactorListeners)

and Control (with EnactorParameters).

We added an output property and a list of its output values for the Enactor to represent its output

value, and output options. Each output value is associated with a Reference. Furthermore, while not

necessary, we chose to delegate all inference mechanisms only in Enactors and leave Widgets as

components for maintaining context state. Hence, for an Enactor, there is an In-Widget and an Out-

Widget. Inference is performed over the attribute values of the In-Widget, and the inferred output

value is assigned to the attributes of the Out-Widget.

6.7.1.4 GENERATORS

In some cases, there may not be an explicit In-Widget, such as when a raw signal is retrieved from

an accelerometer. We introduce the Generator component as a one-sided Enactor that only has an

Out-Widget. A Generator can be used to maintain the states of widgets using application-specific

code. They can be thought of as “black box” enactors that do not have a defined input widget. The

output widget gets its state updated.

6.8 EXPLANATION EXPRESSION 113

6
.8

 E
X

P
L

A
N

A
T

IO
N

 E
xp

ressio
n

 1
1

3

6.7.2 ADDING SUPPORT FOR MACHINE LEARNING CLASSIFICATION

Figure 6.4: Architecture of Enactor framework updated to support classifiers. Only one

Reference is used for the classifier; in contrast, for rules one Reference is needed per rule.

The original Enactors supported only rules for inference. However, machine learning classifications

are becoming more popular for use in context-aware applications. Therefore, we extended the

Enactor framework to support classifiers. We used the Weka toolkit [Hall et al., 2009] for the

several classifiers (e.g., J48 decision tree, naïve Bayes, logistic regression, SVM, kNN, AdaBoost) and

Jahmm [Francois, 2010] for HMM classifiers.

6.7.3 DECOUPLING FROM THE CONTEXT TOOLKIT

We have developed the Intelligibility Toolkit to be easily decoupled from the Context Toolkit.

Should developers choose to use other frameworks to build their applications, they will just need to

write an Explainer to generate system-based explanations.

6.8 EXPLANATION EXPRESSION

We describe specific components that make up the data structure for Explanations. An

Explanation consists of the Query passed to the Explainer to generate it and a corresponding

Expression containing the content of the explanation. Expressions come in two styles: logic

expressions for rule traces and multi-arrays for weights of evidence.

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Classifier
Reference

Output
Value

Attribute

Attribute

Attribute

Attribute

Out-Widget

Context
Outputs

Service

Attribute

Attribute

Attribute

Attribute

FuncDesc

FuncDesc

Output
Actions

FuncDesc

FuncDesc

114 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.8

 E
X

P
L

A
N

A
T

IO
N

 E
xp

ressio
n

 1
1

4

6.8.1 RULE TRACE LOGIC EXPRESSIONS

Rule trace logic expressions consist of singular and compound expressions. They are able to

represent arbitrary rule expressions, and expressions structured in disjunctive normal form (DNF)

or conjunctive normal form (CNF).

6.8.1.1 TERMINAL EXPRESSIONS (CONDITION LITERALS)

We use terminal expressions to represent condition literals, which are atomic elements of Boolean

expressions. Presently, only nominal and numeric attributes are handled.

PARAMETER

Parameter represents a condition literal for a nominal or numeric attribute taking a specific value,

e.g., , . It contains a name and a value.

COMPARISON AND DUALCOMPARISON

Comparison extends Parameter to be able to represent inequality (and equality) relations, e.g.,

 , . Comparison adds a relation property. We also have

DualComparison to represent a double-bounded relation, e.g., .

NEGATED

Negated represents a negated condition literal with the original Parameter as its child. It is useful

for representing Normal Forms (e.g., negated normal form, DNF, CNF).

6.8.1.2 COMPOUND EXPRESSIONS

We have compound expressions to represent combinations of multiple conditions literals. These

are useful for parsing rules into the Expression format and subsequently converting to DNF or CNF.

CONJUNCTION AND REASON

We encode a Conjunction as a List of Expressions connected with the AND () operator.

Reasons are Conjunctions where each element is a condition literal.

DISJUNCTION AND CLAUSE

We encode a Disjunction as a List of Expressions connected with the OR () operator.

Clauses are Disjunctions where each element is a condition literal.

6.8 EXPLANATION EXPRESSION 115

6
.8

 E
X

P
L

A
N

A
T

IO
N

 E
xp

ressio
n

 1
1

5

NEGATION

Negation represents the negation of any Expression. Unlike Negated, the child expression does

not need to be a terminal literal.

DNF

To support standardization for post-processing, we require explanation expressions to be

converted into DNF (see Section 6.10.3) as opposed to leaving them in arbitrary structures. A DNF is

a Disjunction of Reasons.

CNF

Some explanations may be represented in CNF (e.g., Why Not, see Section 6.10.3.2). A CNF is a

Conjunction of Clauses.

6.8.2 WEIGHTS OF EVIDENCE ARRAYS

Weights of Evidence explanations consists of atomic weights that sum together to give a total

evidence for inference. We represent this summation of weights with arrays.

6.8.2.1 WEIGHTSEVIDENCE

WeightsEvidence represents a one-dimensional weights of evidence. It extends Reason, so it is

easily amenable to Reducers that also apply to Reasons (see Section 6.11.2.1), or Presenters that

are originally designed for Reasons.

6.8.2.2 WEIGHTSEVIDENCEND

In general, weights of evidence may be multiple dimensional (e.g., input features and time for

HMM). We use WeightsEvidenceND to represent a multi-dimensional array (multi-array) of

weights of evidence. Using object-oriented design in WeightsEvidenceND, we provide capabilities

for arithmetic operations for multi-array weights of evidence (e.g., add, subtract, normalize). These

operations are necessary for computing Why and Why Not explanations (see Section 1.1.1).

Particularly important for explaining ensemble meta-classifiers, new dimensions can be added to

WeightsEvidenceND using the collate function (e.g., see Section 6.10.8).

WeightsEvidenceND can be reduced to WeightsEvidence using DimensionReducer (see Section

6.11.2).

116 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.9

 Q
U

E
R

Y
 1

1
6

6.9 QUERY

We describe three types of queries currently implemented in the Intelligibility Toolkit to support

various question types.

6.9.1 BASE QUERY

The base Query provides an encapsulation for posing a question to an explainer by specifying a

question type, the context to ask, and about which time (to support asking about a historical event).

For example, to ask why availability was inferred as it was at 4pm, we create the query (in pseudo-

code):

new Query("availability", Query.WHY_QUESTION, "4pm")

6.9.2 ALTQUERY

AltQuery extends Query and includes an alternative target output value to facilitate explanation

types Why Not, and How To.

6.9.3 INPUTSQUERY

InputsQuery extends Query and allows the setting of input values; this supports What If

explanations.

6.9.4 EXTENDING QUERY

Basic Query AltQuery InputsQuery

What

Certainty

When

Why

Inputs

Outputs

Description

Situation

Why Not

How To

What If

Table 6.1. Summary of currently supported question types grouped by the Query class that

supports them.

6.10 EXPLAINER ALGORITHMS 117

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
1

7

While the Queries already supports a wide range of question types, developers may want to provide

explanations for questions that we had not explored, or more esoteric explanation types relevant to

their specific applications. It is easy to support a question type by specifying a new name for the

question parameter in the Query. Unfortunately, none of the existing Explainers will recognize

and be able to answer the new question. This will require new code and algorithms. We discuss

how a toolkit programmer may allow Explainers to support new question types in Section 6.10.

6.10 EXPLAINER ALGORITHMS

We describe the algorithms to generate various explanation from five inference models, and defer a

more mathematically rigorous derivation in Appendix B. For system-based explanation types, we

focus on explanations from Enactors, and describe base explanations for the WEKA toolkit in

Appendix B.3. For model-based explanation types, we describe algorithms for explaining Rules,

Decision Trees, naïve Bayes, and hidden Markov models, and Bagging. We defer descriptions of

algorithms for explaining other machine learning classifiers in Appendix B.

6.10.1 ENACTOR BASE EXPLAINER

Figure 6.5: Architecture of components of the Intelligibility Toolkit integrated into the

Enactor framework for a typical context-aware application built with the Context Toolkit.

We describe how system-based explanations are generated from Enactors in the updated Enactors

framework (Section 6.7.1). Figure 6.5 illustrates the relation of the components of the Intelligibility

Toolkit with the Enactor framework.

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Reference

Reference

Out-Widget

Attribute

Attribute

Attribute

Attribute

Context
Outputs

Querier ExplainerSelector PresenterReducer

Service

Attribute

Attribute

Attribute

Attribute

FuncDesc

FuncDesc

Output
Value

Output
Value

Output
Actions

FuncDesc

FuncDesc

118 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
1

8

6.10.1.1 WHAT EXPLANATION

This simply returns the Output value of the EnactorReference that is triggered.

6.10.1.2 WHEN EXPLANATION

This retrieves the timestamp of when the Widget Attribute value was changed.

6.10.1.3 INPUTS EXPLANATION

The Inputs explanation reports the name and value of each context (Widget attribute) used as

input in the Enactor model, i.e., from all References.

6.10.1.4 OUTPUTS EXPLANATION

The Outputs explanation reports a List of output values that the Out-Widget of the Enactor may

take.

6.10.1.5 WHAT IF EXPLANATION

A What If explanation sets input context values set by the user (through InputsQuery), and tests it

on all References. It reports the output value associated with the Reference that gets triggered.

Model-specific explanations are generated from different Explainers for each model.

6.10.1.6 DESCRIPTION EXPLANATION

We use the DescriptionExplanationDelegate (see Section 6.10.9) to maintain a map of textual

information for contexts used in the inference model.

6.10.2 MODEL-BASED EXPLAINERS

The base Explainer leaves model-based explanations unimplemented and defer to concrete

explainers to handle. In the next sections, we describe several Explainers and the algorithms to

generate explanations from various inference models. First, we cover Rule Trace explainers, then

Weights of Evidence explainers.

6.10 EXPLAINER ALGORITHMS 119

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
1

9

6.10.3 DISJUNCTIVE NORMAL FORM (DNF) TRACE EXPLAINER

Why Trace Why Not Traces How To Traces

Figure 6.6: Diagram representation of extracting Why explanation(s) and extracting Why

Not explanations from a system of DNF trees. (Left) Explains why th class was inferred,

selecting conjunction traces that are satisfied by the current input values. (Middle) Negating

the DNF tree for rules inferring the th class produces a tree in conjunctive normal form

(CNF) after applying De Morgan’s Laws. Note that condition literals are negated. All

disjunction traces in the CNF negated tree are satisfied, highlighting specific negated

condition literals that are satisfied by the current input values. (Right) Explains how to infer

the th class by returning the full DNF tree that can infer that class.

We use the disjunctive normal form (DNF) as the core data structure from which to generate rule

trace explanations. We assume that for sufficiently simple context-aware applications, rules can be

converted into DNF (albeit not necessarily efficiently) and so can decision trees. We store the rules

as a system of DNF trees, one for each outcome value. Once we have the DNF trees, we can generate

Why, Why Not and How To explanations (see Figure 6.6). Detailed proofs are in Section B.5.

Yi

∩

∩

…

¬ ¬

¬Yj

∩

¬ ¬ … ¬

¬

Yi

∩

∩

…

120 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

0

6.10.3.1 WHY EXPLANATION

This explanation selects the rule(s) that was satisfied to produce the actual output (see Figure 6.6,

Left).

6.10.3.2 WHY NOT EXPLANATION

This explanation selects rules that would achieve the target output value and, for each trace,

identifies unsatisfied conditionals and returns a disjunction of traces containing these conditionals

(Figure 6.6, Middle).

6.10.3.3 HOW TO EXPLANATION

This explanation returns the full DNF tree of the rule that achieves the target output, where each

trace is a rule of how to achieve the target output value (Figure 6.6, Right).

6.10.4 RULES EXPLAINER

We implement an explainer for rules in the Enactor framework that provides a Rule Trace style of

explanations.

The Enactor framework supports one rule per Reference and we enforce one Reference per output

state. A decision model with multiple output states will have multiple rules, one per state. We make

rules explainable by converting them into disjunctive normal form (DNF) by recursively applying

De Morgan's Law, double negative elimination, and the distributive law (see Figure B.2 and Figure

B.3 for a simple algorithm for the conversion). To illustrate how each explanation type is generated,

we shall use the set up described in Table 6.2 and Figure 6.7.

6.10.4.1 WHY, WHY NOT, AND HOW TO EXPLANATION

These explanations are generated from the converted DNF trees from Section 6.10.3.

6.10.4.2 CERTAINTY EXPLANATION

Enactor rules currently do not compute uncertainty, though uncertainty in inputs can be

propagated descriptively.

6.10.4.3 DECISION TREE RULE TRACE EXPLAINER

We implement an explainer for decision trees that provides a Rule Trace style of explanations.

6.10 EXPLAINER ALGORITHMS 121

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

1

This explainer generates explanations from the Weka [Mark et al., 2009] J48 implementation of the

C4.5 decision tree [Quinlan, 1993]. There are some differences between decision trees and Enactor

rules. Decisions for inferring the output are made from the top down, instead of from the bottom up

as for rules; and decision trees encode traces for multiple output values within a single tree, unlike

a rule-based structure. So DNF rules are created by traversing all paths in the tree and grouping

paths by output values at their leaves (see Figure B.5 and Figure B.6 for the parsing algorithms). In

DNF, we can generate explanations in the same way as for rules. To illustrate how each explanation

type is generated, we shall use the set up described in Table 6.2 and Figure 6.8.

6.10.4.4 WHY, WHY NOT, AND HOW TO EXPLANATION

These explanations are generated from the converted DNF trees from Section 6.10.3.

6.10.4.5 CERTAINTY EXPLANATION

Decision trees are built from statistical data, so they can model certainty from the probability

distribution of remaining data points at each leaf.

122 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

2

Input Conditionals Output Values (Availability)

a: Location = Home

b: Sound = In a Conversation

c: Time = Evening

d: Schedule = Meeting

e: Contacter = Family/Friend

 = Available

 = Somewhat Unavailable

 = Unavailable

Table 6.2. Pedagogical example of input conditionals and output values for rule and decision

tree. This describes an application to infer a user's availability based on his Location, Sound

activity around him, the Time of the day, his Schedule, and who is Contacting him.

 ≡

Input state (a, ¬b, ¬c, ¬d, e): the user is at Home, not in a Conversation, not in a Meeting, and

is being contacted by a Family member or Friend.

Why available ()? Because the user is not in a Conversation (¬b), is not in a Meeting (¬d),
and being contacted by a Family/Friend (e).

Why Not unavailable ()? Because he is not in a Meeting (¬d) and is being contacted by a
Family/Friend (e).

How To infer unavailable ()? It needs to be before Evening time (¬c) and he needs to be in a Meeting
(d); or he is contacted by a Coworker (not Family/Friend; ¬e).

Figure 6.7: Conversion of a set of rule tree expressions into separate trees in disjunctive

normal form (DNF) to generate explanations from Rules.

a b ec d a ¬b e¬c ¬d

(2) NNF To DNF

• Depth-first
traversal of NNF

• Construct one trace
per disjunct branch

(1) To NNF

• Double negation
elimination

• De Morgan’s Laws

 baba

 baba

∧

∨ ¬

a ¬b
∨

¬e∧

¬c d

∧

∨

a ¬b

∧

e∨

c ¬d

a

e

c

a

e

¬d

¬b

e

c

¬b

e

¬d

∨

∧ ∧ ∧ ∧

Why

∨

¬e∧

¬c d

∧

∨

∧
¬

(1) To NNF
(2) NNF To DNF

¬c

d

¬e

∧

c

e

∨

∧

¬d

e

∨

c

¬d

∧

∨

e

CNF To DNF

=

Why NotHow To

6.10 EXPLAINER ALGORITHMS 123

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

3

Why available ()? Because the user is at Home (a), it is not Evening time (¬c), and he is not
in a Meeting (¬d).

Why Not unavailable ()? Because he is not in a Conversation (¬b) and he is not in a Meeting (¬d).

How To infer unavailable ()? He needs to be not at Home (¬a) and in a Conversation (b); or at Home
(a), not during the Evening (¬c), and be in a Meeting (d).

Figure 6.8: Conversion of a decision tree into separate trees in disjunctive normal form

(DNF) to generate explanations from Decision Trees.

∨

∧

a

e

c

∧

a

¬d

¬c

∧

a

¬a

∧

a

c

∧

a

¬d

∧

¬b

¬d

∨

a

cb

d

a b ec d

¬
CNF To DNF

=

How To

Why

Why Not

e

∨

∧

¬a

b

∧

a

d

¬c

∧

∨

a

∨

¬a

¬b

¬d

c

∧

¬b

¬a

∧

¬b

c

¬

¬ ¬

¬ ¬

124 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

4

6.10.5 WEIGHT OF EVIDENCE EXPLAINER

This explainer forms the abstract basis of our subsequent weights of evidence explainers. It works

on the basis that an inference is due to a total evidence, where this evidence may support or oppose

the inference, and can be due to a sum of underlying atomic weights of evidence. These weights may

be due to the input feature values voting for or against an inference. Depending on the inference

model, there may also be more dimensions of atomic weights of evidence. For simplicity, we denote

an atomic weight as , and the space of all atomic weights as . A total evidence can thus be

represented as the sum:

 (6.1)

Equation (B.35) requires that the explainer is able to derive a linear additive expression of atomic

units. This is easy for linear classifiers (e.g., linear SVM), but in general, isotonic (monotonic

increasing) transformations may be required (e.g., see explainer for naïve Bayes in Section B.15).

We defer these steps to later sections describing the concrete explainers.

We shall next show how with these absolute weights of evidence, we can derive weights of evidence

explanations for Why and Why Not questions.

6.10.5.1 ABSOLUTE EVIDENCE

This explains the confidence of inference, , as a total evidence due to the sum of atomic weights

 (6.2)

where is the th atomic weight of evidence.

6.10.5.2 WHY NOT EXPLANATION

This explains why the th class was not inferred over the th class. In other words, why the th class

was inferred instead of the th class, i.e., :

 (6.3)

where and we assume that the atomic weights of evidence are separable by each

atomic unit. Note that this is different from the Why Not explanation of a rule trace that explains

6.10 EXPLAINER ALGORITHMS 125

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

5

why the th class was not inferred. In this case, the th class may have been inferred, but just not

with the highest certainty among all class values.

6.10.5.3 WHY EXPLANATION

This explains why the th class was inferred over all other class values , i.e., .

Consequently, Equation (6.3) holds for , such that we can sum over to get the Why

explanation:

 (6.4)

6.10.5.4 CERTAINTY EXPLANATION

Assuming that at the system level, the model will produce a distribution of certainty for inferring

each class value, the Certainty explanation returns this distribution:

 (6.5)

where is the total certainty (usually normalized as a probability to 1) and is the certainty for

inferring the th class value.

6.10.5.5 HOW TO EXPLANATION

This explanation depends on underlying model and we defer this to the later sections.

6.10.6 NAÏVE BAYES EXPLAINER

We implement an explainer for naïve Bayes that provides a Weights of Evidence style of

explanation. The naïve Bayes classifier is a simple classifier that uses Bayes theorem to classify

values. It assumes that input features are conditionally independent of one another. Our

explanation for naïve Bayes inference is an extension of [Poulin et al. 2006] for multi-class

problems.

126 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

6

The posterior probability that the th class is inferred () from a set of class values given the

observed instance input feature values :

 (6.6)

where is an input feature of possible values. The probability is calculated from the prior

probability that a class would be in, , and the conditional probabilities of each feature value

given the class, . For notation convenience, let us define

Then Equation (6.6) becomes

 (6.7)

Taking a log transform of Equation (6.7) gives the linear expression for the weights of evidence

explanation:

(6.8)

where .

With Equation (6.8), naïve Bayes can be explained as the sum of evidence

1. Prior probabilities of selected class value,

2. Due to each feature value,

and we can derive a Why and Why Not explanation by substituting Equation (6.8) into Equation

and Equation , respectively.

6.10.6.1 HOW TO EXPLANATION

This shows weights of all features due to normalized values of the features, so the user can make

sense of the general impact of each feature. (i) For nominal features, they only take a value of 0 or 1,

6.10 EXPLAINER ALGORITHMS 127

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

7

so their evidence will either be 0 or . (ii) For numeric features, they are commonly modeled by

the Normal distribution; we "normalize" numeric features to a value of one standard deviation, ,

from the feature mean given the class value: .

In terms of what the user can do with input values to get a desired target output, if all values are

nominal, we can permute all combinations and return those that achieve the target output. If

multiple inputs are numeric, this becomes intractable. Instead, we could use a How To If

explanation.

6.10.6.2 HOW TO IF EXPLANATION

This provides a tractable form of How To explanations (for nominal and numeric features) by

constraining all feature values except one. For a numeric feature that is not fixed, we can vary the

input value as it deviates from the mean and determine the threshold at which the outcome is

achieved (or fails, if it is the opposite relation). A generalization of this with increased interactivity

is the How To + What If explanation.

6.10.6.3 HOW TO + WHAT IF EXPLANATION

One way to help users appreciate the influence of each weight is to allow users to speculate on the

outcome with selected feature values. The What If explanation supports this, but does not

necessarily start with sensible values to help users learn. The How To + What If explanation starts

with the target th class value, and provides a set of mean feature values that satisfies this output,

 . The user can then tweak the feature values to see if the target output value would still be

inferred.

6.10.7 HMMEXPLAINER

We implement an explainer for HMMs that provides a Weights of Evidence style of explanation.

A hidden Markov model (HMM) is a Bayesian network that models the probability of a sequence of

hidden states given a sequence of observations (input features with respect to time). First-order

Markov models assume that only the previous state affects the next, and only the current state

influences the current observation. For detailed information on HMMs, please refer to [Rabiner,

1989]. We can derive a weights of evidence explanation for HMMs in a similar manner as we did for

naïve Bayes.

128 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

8

We consider HMMs with observation vectors for each time step, specifically with input features.

At time step , the observation is .

The probability of inferring state sequence with length , given the observation sequence is:

(6.9)

where is the prior probability that a state is , the transition

probabilities from state to , and the emission probabilities of the

observations given the state sequence.

To allow features to individually provide evidence, we need to make a naive assumption (similar to

what is done for naive Bayes) that the features are independent of one another given any state, i.e.,

 (6.10)

We define a new parameter for the HMM, , which is a naive emissions

probability matrix representing the probability of observing input value given hidden state .

Substituting Equation (B.97) into Equation (B.96) gives

 (6.11)

For notation convenience, we rewrite Equation (B.98) as:

 (6.12)

where

6.10 EXPLAINER ALGORITHMS 129

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
2

9

Taking a log transform on Equation (B.96) gives the weights of evidence explanation:

 (6.13)

where

So, with the naive assumption of independence among features, HMMs can be explained as the sum

of evidence of:

1. Prior probabilities of selected state, ()

2. Weights of Evidence due to each state transition,

3. Weights of Evidence due to feature value at time sequence step, ()

6.10.7.1 INPUTS AND WHAT IF EXPLANATION

Though not formally an input, these explanations should also include state transitions. For the What

If explanation, the user may want to speculate if a previous state was different, even though hidden

states are actually inferred.

6.10.7.2 WHY, WHY NOT, HOW TO, AND CERTAINTY EXPLANATIONS

Similar to the explainer for naïve Bayes, but with added evidence for time.

6.10.7.3 REDUCING DIMENSIONALITY

If an application has many input features and/or a long sequence (i.e,. large and/or large), there

may be too many weights of evidence to show to end-users. To reduce this dimensionality and

make this more interpretable, we can sum evidence by feature across time (see Figure 6.12), or

present evidence by time and sum evidence across features for each observation. Formally, this is

done using DimensionReducer (see Section 6.11.2).

130 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
3

0

6.10.8 BOOTSTRAP AGGREGATION (BAGGING) EXPLAINER

Ensemble meta-classifiers are popular techniques to further improve the accuracy of classifiers.

Two popular ensemble methods are Bootstrap Aggregation and AdaBoost. We describe how to

generate explanations for Bagging in this section, and for AdaBoost in Appendix B.22.

Bootstrap aggregation (also called Bagging) [Breiman, 1996] takes a training dataset, , and creates

 new training sets by sampling examples from with replacement. This method is called boostrap

sampling. It then trains versions of the base classifier, one classifier for each new training set.

Overall inference is done by voting the inference of each of the base classifiers:

 (6.14)

where is the probability of the th classifier inferring the th class, and is a normalization

constant.

Using Equation (B.126), we can derive a weights of evidence explanation for inferring the th class

in terms of classifiers:

 (6.15)

where is the linearly separable weights of evidence expression for the th base classifier and

 is the value of the total weights of evidence. The term

, which has

value , allows us to normalize the magnitude of such that we can retain the relative

weights of evidence due to each base classifier and scale each of them to the certainty of that

classifier, .

Note that because this meta-classifier explainer requires weights of evidence explanations from the

base classifier, it will only work if the classifier has an Explainer that can generate weights of

evidence. To give an idea of what the atomic weights of evidence represent for several bagged

classifiers, we work out the expression for bagged naïve Bayes, though they are automatically

generated using Equation (6.10).

6.10 EXPLAINER ALGORITHMS 131

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
3

1

6.10.8.1 RANDOM (BAGGED) NAÏVE BAYES

Adapting the weights of evidence explanation for naïve Bayes within an ensemble classification,

Equation (6.8) becomes:

 (6.16)

Substituting Equation (6.11) into Equation (6.10), we get

 (6.17)

where

Hence the weights of evidence for a bagged naïve Bayes meta-classifier consists of two dimensions:

input features and classifier.

6.10.9 DESCRIPTIVEEXPLAINERDELEGATE

We use a delegate to manage textual descriptions to provide Description explanations. It uses a

system of hash maps to store various types of descriptions for each context (input or output). Using

insight gained from designing Laκsa, a high-fidelity intelligible application prototype (see Sections

7.2 and 9.3), we developed the DescriptiveExplainerDelegate to include maps for textual

content such as:

 Descriptive text explaining terminology or describing concepts

 Pretty names to use in place of original technical terms for contexts or their nominal

(discrete) values

 Units of the context, e.g., seconds for time, Hz for frequency, Watts for power (energy/time)

 Longer text to provide the design rationale or justification for the context or the

implication of the context taking various values.

In general, this can be extended to include other types of textual descriptions that developers may

be interested to include in their applications.

132 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

0
 E

X
P

L
A

IN
E

R
 A

lgo
rith

m
s

 1
3

2

6.10.10 OTHER IMPLEMENTED EXPLAINERS

Rule Trace Weights of Evidence

Rules

Decision Trees

Linear Regression

Logistic Regression

Naïve Bayes

HMM

Decision Trees *

Random Forest

Linear SVM

kNN

AdaBoost

Bagging

Table 6.3. Summary of inference models supported by the Intelligibility Toolkit grouped by

style of explanation each explainer generates. * The toolkit provides Rule Trace and Weights

of Evidence explainers for decision trees, e.g., J48 has J48RuleTraceExplainer and

J48EvidenceExplainer.

The Intelligibility Toolkit currently supports at least 11 types of explainers for popular inference

models in context-aware applications and machine learning applications (see Table 6.3).

Algorithms for generating explanations from these models are in Appendix B.

6.10.11 EXTENDING EXPLAINERS

System-based Model-based Application-based

What

When

Inputs

Outputs

What If

Certainty

Why

Why Not

How To

Description

Situation

Table 6.4. Summary of explanation types grouped by dependency. Toolkit programmers only

need to implement Model and Application-dependent explanation types.

New explainers can be developed to (i) explain new inference models, or (ii) support new

explanation types, which are currently unsupported in the Intelligibility Toolkit. The latter goal also

6.11 REDUCER 133

6
.1

1
 R

E
D

U
C

E
R

 1
3

3

includes providing new styles of explanations for explanation types that are currently supported.

Here, we focus on how developers may write new explainers to explain new inference models.

Given the 12 explanation types we seek to support (see Section 6.3 and summary in Table 6.4), it

can be cumbersome for each new explainer to implement algorithms for all of them. Fortunately,

there are common dependencies that developers may take advantage of. Six system-dependent

explanation types are automatically supported if developers build applications using the Enactors

framework [Dey and Newberger, 2009]. Otherwise, these explanation types can also be

implemented for different frameworks (e.g., for Android mobile programming).

Implementing the four model-dependent explanation types is also simplified with the

DnfTraceExplainer and WeightsOfEvidenceExplainer, which implement these explanation

types. To provide explanations for a rule-based system similar to Enactor rules or for a decision

tree model, the inference model need only be parsed into DNF trees, one DNF tree per outcome

value. Explanations can then be automatically generated for Why, Why Not and How To using

DnfTraceExplainer as a delegate. To provide explanations in terms of weights of evidence, the

explainer need only implement the sum of atomic weights of evidence, (see Equation (6.2)), or

the sum of relative weights of evidence, (see Equation (6.3)). Explanations can then be

automatically generated for Certainty, Why, Why Not and How To using

WeightsOfEvidenceExplainer.

Finally, to support application-dependent explanation types, such as Description and Situation,

explainers will need to be hand-crafted to suit the application being built. Description explanations

require custom text content and Situation explanations may involve custom information and

representations.

Note that, though recommended, it is not necessary for explainers to implement all 12 explanation

types in Table 6.4.

6.11 REDUCER

Generated explanations may contain too much information and be overwhelming to end-users. In

this section, we describe the Reducer component to simplify the explanation data structures before

passing them on to Presenters. The Intelligibility Toolkit currently supports two types of reducers:

Logic Reducers for rule traces, and the Dimension Reducer for weights of evidence.

134 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

1
 R

E
D

U
C

E
R

 1
3

4

6.11.1 LOGIC REDUCERS

Rule trace explanations can be overwhelming in two ways: (i) too many reasons (e.g., numerous

ways to achieve a target output value), and (ii) each reason being too long (e.g., numerous inputs

with required values to cause the output value). The latter case can happen when many sensors and

feature values are used to build the models, as is the case for accurate learned systems. The

Intelligibility Toolkit provides Disjunction Reducers to reduce the number of reasons via various

schemes, Conjunction Reducers to reduce the length of each rule trace reason, along with Reducers

that can handle any logical expression (e.g., QmcReducer that uses the Quine-McCluskey algorithm

to minimize logic expressions).

6.11.1.1 DISJUNCTION REDUCERS

We describe several DisjunctionReducers to reduce the number of Reason traces.

FIRSTDREDUCER

This reducer simply selects the first reason in the DNF structure of the explanation.

SHORTESTDREDUCER

This reducer selects the reason with the shortest length as the explanation.

6.11.1.2 CONJUNCTION REDUCERS

We describe several ConjunctionReducers to shorten the length of each Reason trace.

TRUNCATIONCREDUCER

This reducer simply truncates the Reason trace to a specified length.

FILTERCREDUCER

This reducer retains only the condition literals (Parameter) in the Reason that describe input

features specified in a list, dropping others. Input features can be selected for their saliency, easy of

understanding, or even for privacy sensitivity, depending on the application.

6.11.1.3 MINIMIZATION REDUCERS

In order to simplify the explanations, the previous Reducers unfortunately lose information by

discarding them. An alternative method to simplify explanations is to minimize the Boolean

6.11 REDUCER 135

6
.1

1
 R

E
D

U
C

E
R

 1
3

5

expression of the explanation. This discards only the redundant information and may both reduce

the number of reason traces and the length of each reason trace. Several methods exist for logic

minimization such as Karnaugh mapping, the Quine-McCluskey algorithm, the Espresso heuristic

minimization program. We currently support the Quine-McCluskey algorithm with the

QmcReducer.

NUMERIC CONJUNCTION REDUCER

This reducer selects condition literals in a reason and merges inequalities that relate to the same

numeric feature. For example,

QUINE-MCCLUSKEY REDUCER

This reducer, QmcReducer, uses the Quine-McCluskey algorithm2 to minimize a Boolean expression

by removing redundant condition literals. It can be applied to the rule structure in any Boolean

expression. We ported the implementation of the Quine-McCluskey algorithm in the Truth Table

Solver [Ahmed, 2011] to work with the Expression data structure.

6.11.1.4 COMPOUNDREDUCER

We provide CompoundReducer to provide a convenient means to apply multiple reducers

sequentially on an Explanation.

6.11.1.5 EXTENDING LOGIC REDUCER

New logic reducers can be implemented to support other heuristics to simplify explanations. Simple

reducers, which assume that explanations are structured in DNF, can focus on reducing the number

of reasons by extending DisjunctionReducer, or focus on reducing the length of each reason by

extending ConjunctionReducer. More sophisticated reducers can be developed for reducing

explanations by directly extending the base Reducer. In particular, more efficient algorithms can be

implemented for logic minimization.

Reducers may be used in alternative manners that do not necessarily reduce the length of

explanations. For example, Metaxas [2010] suggested that users interpret explanations more

2
 Quine-McCluskey algorithm. http://en.wikipedia.org/wiki/Quine-McCluskey_algorithm Retrieved 1st March,

2012.

http://en.wikipedia.org/wiki/Quine-McCluskey_algorithm

136 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

1
 R

E
D

U
C

E
R

 1
3

6

quickly when terms have higher affinity (e.g., “driving” and “running” have higher affinity than

“running” and “talking”). Therefore, we may implement an AffinityReducer that applies to

Conjunctions that re-arranges logical terms (Parameters) to group them by affinity, instead of

reducing their lengths.

6.11.2 DIMENSION REDUCER

Simple weights of evidence explainers can generate weights in terms of just the input features.

However, there may be multiple dimensions for the weights of evidence (e.g., the explainer for

hidden Markov Models (HMMs) has a dimension for input features and time), leading to an issue of

dimensionality explosion, where the number of weights of evidence equals the product the lengths

of each dimension. Once again this can overload end-users with too much information. One way to

reduce this complexity is to aggregate the weights of evidence along some dimensions. For example,

for HMM explanations, we may aggregate along time to sum all weights that are regarding the same

time step, or we may aggregate along input features to sum all weights that are regarding the same

input feature. The Intelligibility Toolkit provides this functionality with DimensionReducer, which

reduces a multi-dimensional weights of evidence array, WeightsEvidenceND, to fewer dimensions

chosen by the developer.

A typical use of DimensionReducer may be to reduce a multi-dimensional weights of evidence,

WeightsEvidenceND, to just the one dimension, WeightsEvidence, specifically the input features

dimension. This then resembles a single rule trace and we can apply ConjunctionReducers to

further simplify the explanations if needed.

6.11.2.1 CONJUNCTION REDUCERS FOR WEIGHTS OF EVIDENCE

A typical use of DimensionReducer may be to reduce a multi-dimensional weights of evidence,

WeightsEvidenceND, to just the one dimension, WeightsEvidence, specifically the input features

dimension. This then resembles a single rule trace and we can apply some ConjunctionReducers

to further simplify the explanations if needed.

REMAINDERCREDUCER

This reducer truncates the Reason, but also accumulates remaining weights of evidence that were

removed into a remainder term.

6.12 PRESENTER 137

6
.1

2
 P

R
E

SE
N

T
E

R
 1

3
7

NEGLECTCREDUCER

This reducer removes each term from the weights of evidence if its absolute of its numeric value, ,

is below a threshold, , i.e., . It is useful to neglect weights that are approximately zero.

6.12 PRESENTER

Along with Querier (see Section 6.13), the Presenter component provides a separation of the

presentation of explanations from their content information to follow the principle of Model-View-

Controller (MVC) separation. Presenters need to implement the method render(Explanation)to

receive the generated Explanation to present. We describe several Presenters for different

platforms.

6.12.1 STRINGPRESENTER

StringPresenter is a basic presenter that just renders explanations as a String text. Together

with DescriptionExplainerDelegate, this presenter can print the explanation with pretty

names and units.

6.12.2 DESKTOP-BASED PRESENTERS (JAVA SWING)

We describe several Presenters implemented in Java Swing to build intelligible context-aware

applications with desktop-based GUIs.

TABLEPANELPRESENTER

TablePanelPresenter renders explanations in a table showing one Reason at a time. Each row

renders a Parameter (conditional literal) with the name in the first column and value in the

second column. See Figure 6.9 for an example of this presenter.

TYPEPANELPRESENTER

TypePanelPresenter extends TablePanelPresenter to render the explanation differently

depending on the explanation type. For example, Why and Why Not explanations render with a bar

chart with multiple rows, Inputs explanations render with just the numeric values for each input

feature, and What and Certainty explanations render with one value. See Figure 6.9 for an

implementation of this presenter.

138 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

3
 Q

U
E

R
IE

R
 1

3
8

6.12.3 MOBILE-BASED PRESENTERS (ANDROID)

As part of the implementation for Laκsa2, an intelligible mobile application prototype (see Figure

9.1), we have developed several Presenters on the Android phone to render explanations of various

context types and inference models: AvailabilityPresenter, PlacePresenter,

SoundPresenter, MotionPresenter.

6.12.4 BUILDING YOUR OWN PRESENTERS

To support UI code of any framework, the base Presenter is a Java interface. While Presenters

provide convenient functionality to present explanations with only “glue” code, they are limited in

their design, and platform (e.g., only a few Java Swing and Android Presenters are currently

implemented). Furthermore, each application will likely require customized presentation and UI

code. For example, a map-based application may use a map UI to explain Place inference, while a

motion recognition application may draw physical diagrams to explain how accelerometer features

influenced the inference.

The main requirements for Presenters are to implement the interface method

render(Explanation), and update the UI correspondingly. It is the responsibility of the Presenter

to parse the Explanation and understand how to interpret it. The Presenter may also render

explanations differently depending on the type of Query it is in response to. Presenters are also

tightly coupled to the source Explainer (pertaining to interpreting the generated Explanation

structure), and the individual input contextual factors (pertaining to domain information).

However, it is not necessary for toolkit programmers of Presenters to know how to generate the

explanations (that is for programmers of Explainers).

6.13 QUERIER

Queriers provide the control interface for the Model-View-Controller (MVC) architecture for

intelligibility. They facilitate end-users to ask questions types and generate Queries to be passed to

Explainers. Similarly to Presenters, they depend on the application platform.

6.13.1 DESKTOP-BASED QUERIERS (JAVA SWING)

We describe a Querier implemented in Java Swing to build intelligible context-aware applications

with desktop-based GUIs.

6.14 SELECTOR 139

6
.1

4
 S

E
L

E
C

T
O

R
 1

3
9

QUERYPANEL

In our demo applications (see Section 6.15), we implemented QueryPanel as a GUI element for the

Querier to allow users to ask questions for intelligibility. It consists of a drop-down menu

(JComboBox) to select the question to ask. This facilitates creating a base Query after the user

selects the question (e.g., see Figure 6.9). To facilitate creating an AltQuery for asking Why Not and

How To questions, it displays a second drop-down menu showing the possible Output values (e.g.,

see Figure 6.11, Right). To facilitate creating an InputQuery for a What If question type, it also

provides WhatIfPanel, which allows end-users to choose values of Inputs (e.g., see Figure C.,

Right).

6.13.2 TEXT-BASED QUERIERS

Queriers need not be GUI-based to allow users to ask questions. Here, we describe a text-based

Querier.

QUERYPARSER

As an alternative to GUI-based interaction, QueryParser parses text input to interpret what

question the end-user is asking to create the corresponding Query. See Section 6.15.2 and Figure

6.10 for an example of this presenter.

6.13.3 BUILDING YOUR OWN QUERIER

Writing Queriers follows similar principles to writing Presenters. To support UI code of any

framework, the base Querier is a Java interface. The application developer needs to implement

interaction code to determine what question the end-user is asking, and create the corresponding

Query.

6.14 SELECTOR

The Selector component allows the Intelligibility Toolkit to formally support context-aware

intelligibility, where question and explanation types are suppressed, provided, or promoted

depending on contextual factors. These contextual factors are input as a List of Parameters. Each

Selector encodes heuristics or design recommendations to appropriately provide explanations.

140 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

4
 S

E
L

E
C

T
O

R
 1

4
0

6.14.1 QUERY SELECTORS

We provide QuerySelectors to limit or promote questions for which to generate explanations

given the input contexts. QuerySelectors operate before the Querier is rendered rather than after

the explanation is generated, so as to restrict the end-users from asking question types that may not

be suitable. After selection, a QuerySelector outputs a recommended Query or a list of Queries. We

describe some QuerySelectors drawn from design recommendations of our user studies in other

chapters. In this section, we refer to question types the way we refer to explanation types,

emphasizing on the question asking capability rather than the explanation content.

SITUATIONQUERYSELECTOR

The SituationQuerySelector implements the design recommendations of Section 5.7 for which

explanation types to show under various circumstances (e.g., application behavior appropriateness,

situation criticality, number of external dependencies). The selector starts with selecting no

question types and adds corresponding question types that are necessitated by the contexts.

Context values for these circumstances should be provided at design time or run time and supplied

as inputs to the selector.

STREAMLINEQUERYSELECTOR

The StreamlineQuerySelector implements the streamline questioning recommendations of

Section 7.10.3. It takes in the question type of the previously generated explanation at its input to

determine what limited set of explanations may be shown, perhaps in a drop-down menu or button

options.

CERTAINTYQUERYSELECTOR

The CertaintyQuerySelector implements the design recommendations in Section 8.12 for when

to show intelligibility given the certainty of the application. It takes in the application’s inference

Certainty as input and gives a Boolean response of whether to show intelligibility. If the Certainty is

below a threshold, say, 80%, then it will show a smaller subset of question types. On its own, this

Selector does not specify any particular question type to suppress or provide.

6.14.2 REDUCER SELECTORS

Selectors may also be used to select which Reducers to apply to Explanations after they are

generated by the Explainer. This allows for context-sensitive reduction or post-processing of

6.14 SELECTOR 141

6
.1

4
 S

E
L

E
C

T
O

R
 1

4
1

explanations. ReducerSelectors output a recommended Reducer or list of Reducers. For example,

explanations may be selectively reduced when shared with various contacts due to privacy

concerns.

DETAILREDUCERSELECTOR

The DetailReducerSelector specifies the capability to choosing different

ConjunctionReducers that reduce explanations to different lengths. It can be extended to follow

different criteria, such as the contextual dependency of how much time a user may have to view the

explanation. For example, in Section 9.7.2, we describe timing constraints for viewing intelligibility,

and this directly impacts how much information end-users can view in the constrained times. Users

are likely to have less time when they are unavailable than available. Hence, we can use inferred

Availability as a context for whether to reduce more or less.

6.14.3 CHAINING OF SELECTORS

As can be seen, each Selector provides a different recommendation and each basis of selection are

not mutually exclusive. Therefore, they can be chained together to apply multiple selection criteria.

QuerySelectors chain their selections to the smallest subset of Queries they all select (i.e., AND

selection). ReducerSelectors chain their selections into a CompoundReducer that will apply

multiple Reducers sequentially.

6.14.4 BUILDING YOUR OWN SELECTOR

We have presented a few Selectors that apply several criteria for selecting Queries or Reducers. All

Selectors take in contextual inputs as a List of Parameters. QuerySelectors use criteria to select

one or multiple Queries. QuerySelectors with new selection criteria need to satisfy the interface:

List<Query> select(List<Parameter> contexts);

Similarly, ReducerSelectors use criteria to select one or multiple Queries. ReducerSelectors with

new selection criteria need to satisfy the interface:

List<Reducer> select(List<Parameter> contexts);

We can also have Selectors for other components in the Intelligibility Toolkit, namely, Explainers

Queriers, and Presenters. These will implement the generic interface of Selector:

List<C> select(List<Parameter> contexts);

142 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

5
 V

A
L

ID
A

T
IO

N
: D

em
o

n
stratio

n
 A

p
p

licatio
n

s
 1

4
2

where C is the component type to be selected. As an example, we describe a QuerierSelector.

PROVISIONSELECTOR

As a QuerierSelector, the ProvisionSelector selects the Querier interface component for

presenting how a user may ask questions. Specifically, it specifies the capability to select whether to

provide explanations On Demand (when the user explicitly asks), Automatic (context-dependent),

or Always On (shown all the time). These explanation provision types are distinguished in [Gregor

and Benbasat, 1999]. ProvisionSelector can be extended (or customized) to employ the

appropriate provision type depending on the application needs. For example, the selector could

switch from Always On to On Demand after the user has viewed the explanation more than a

threshold number of times.

6.15 VALIDATION: DEMONSTRATION APPLICATIONS

To demonstrate that we can easily generate a range of explanations from context-aware

applications using the Intelligibility Toolkit, we built three example intelligible applications. These

examples demonstrate the use of the Intelligibility Toolkit for a span of explanation types and model

types, and also cover a range of application domains for which the models are popular. While the

toolkit significantly contributes to lowering the bar to providing explanations in context-aware

applications, the explanations still need to be well designed (e.g., for various UI, interaction, and

device modality), and crafted specifically for each application problem domain. Therefore, rather

than examining different explanation methods for the same model or application (e.g., [Stumpf et

al., 2009]), we built different applications for each model type to demonstrate the generality of the

Intelligibility Toolkit to provide explanations across application domains.

More examples and tutorials can be viewed and downloaded at the website we deployed for the

toolkit at http://www.contexttoolkit.org.

http://www.contexttoolkit.org/

6.15 VALIDATION: DEMONSTRATION APPLICATIONS 143

6
.1

5
 V

A
L

ID
A

T
IO

N
: D

em
o

n
stratio

n
 A

p
p

licatio
n

s
 1

4
3

6.15.1 ROOM AUTO-LIGHTING – RULES

Figure 6.9: Automatic Room Lighting application demonstrating explanations of a rule-based

application.

This demo application takes two factors (Presence and Brightness) to determine whether to turn

the light on in a living room. The light would be off if Presence = 0 (i.e. no one in the room) or the

detected brightness measure is less than 100 (out of 255). The application uses

 QueryPanel as a Querier to receive user interaction queries through a drop-down menu

 RulesExplainer to generate explanations from rules

 FilteredCReducer to filter out constant attribute terms in the rules

 StringPresenter to generate text output, which we simply display to a JLabel

We present a full tutorial on how to add intelligibility to a simplified version of this application in

Appendix C.

Room Enactor

Room
Widget

String
Presenter

Rules
Explainer

Light Off

Light On

AltQuery

Query

WhatIfQuery

Room Viewer
QueryPanel

Light Off
Presence = 0

Brightness < 100

Light On
Else

Filtered
CReducer

Presence

Brightness

144 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

5
 V

A
L

ID
A

T
IO

N
: D

em
o

n
stratio

n
 A

p
p

licatio
n

s
 1

4
4

6.15.2 IM AUTOSTATUS – DECISION TREE

Figure 6.10: IM Autostatus demonstrating explanations from an instant messaging plug-in

that uses a decision tree to predict when a buddy may respond.

We built an Instant Messaging plugin that predicts when a buddy will respond to a message (Figure

6.10). It is trained on an existing dataset from [Avrahami and Hudson, 2006] to build a decision

tree. It takes desktop-based sensor inputs and makes response predictions (within, or after 1 min).

The application uses

 QueryParser as a Querier to receive user interaction queries through text commands

 J48RuleTraceExplainer to generate rule trace explanations from the decision tree

 FilteredCReducer to retain only terms that are easily interpretably by end-users

 ShortestDReducer to select only the shortest reason if there are multiple reasons in the

explanation

 ConsolePresenter which extends StringPresenter to generate text output and display it

Response Enactor
Desktop
Widget Classifier

Reference
Trained

Decision Tree

Console
Presenter

Filtered
CReducer

J48
ExplainerAltQuery

Query

WhatIfQuery

After 1 min

Within 1 min

Shortest
DReducer

IM Autostatus Viewer
QueryParser

TimeSinceLastMsg

Focus

KeyboardPresses

…

6.15 VALIDATION: DEMONSTRATION APPLICATIONS 145

6
.1

5
 V

A
L

ID
A

T
IO

N
: D

em
o

n
stratio

n
 A

p
p

licatio
n

s
 1

4
5

We describe how we built this application in detail (the following two applications were built in a

similar fashion) with the following procedure:

1. Create an Enactor for the overall application.

2. Create a Widget that tracks and updates all input features (extracted from the Subtle toolkit

[Fogarty and Hudson, 2007]).

3. Set a pre-trained J48 decision tree classifier model to be the Enactor's classifier.

4. Set the Enactor's list of output values to two values: WITHIN_1_MIN and AFTER_1_MIN.

5. Create two EnactorReferences

a. Associate them with the classifier and

b. Associate one output value with one Reference.

The developer implements what the application does when each Reference is triggered.

6. Create a RulesExplainer and associate with both References.

7. Set the DisjunctionReducer and ConjunctionReducer of the Explainer to

FirstDReducer and TruncationCReducer, respectively.

8. Create an IMAutostatusPresenter, a custom extension of RulesTextPresenter that

understands what each feature means to provide domain-specific textual explanations. It

also handles printing an AIM message.

9. Code UI elements to invoke, on user prompt, various getExplanation() functions from

the Explainer. The corresponding Query needs to be supplied when invoking each

explanation type.

When the user asks for, say, a Why Not explanation about why not WITHIN_1_MIN:

1. The UI parses his request, populates an AltQuerier with WITHIN_1_MIN, and invokes

getExplanation(WhyNot, AltQuerier).

2. The Enactor takes the returned explanation Expression and passes it to

RulesTextPresenter that renders it for the user as an IM response.

146 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

5
 V

A
L

ID
A

T
IO

N
: D

em
o

n
stratio

n
 A

p
p

licatio
n

s
 1

4
6

6.15.3 MOBILE MOTION RECOGNIZER – NAÏVE BAYES

Figure 6.11: Motion Recognizer demonstrating a weights of evidence explanation for a

mobile phone application inferring the physical activity of the user.

The naïve Bayes application we built is a physical activity recognizer that uses the accelerometer on

a Google Android mobile phone to infer whether the user is sitting, standing, or walking (see Figure

6.11). It uses

 QueryPanel as a Querier to receive user interaction queries through a drop-down menu

 NaiveBayesExplainer to generate weights of evidence explanations from the naïve Bayes

classifier

Motion Enactor
Accelerometer

Widget Classifier
Reference

Trained
NB classifier

NaiveBayes
ExplainerAltQuery

Query

WhatIfQuery

Motion Viewer
QueryPanel

Sitting

Walking

Standing

Motion Panel
Presenter

x_mean

x_std_dev

x_energy

…

6.15 VALIDATION: DEMONSTRATION APPLICATIONS 147

6
.1

5
 V

A
L

ID
A

T
IO

N
: D

em
o

n
stratio

n
 A

p
p

licatio
n

s
 1

4
7

 No Reducer so that we can demonstrate how unreduced explanations may look overly

technical to end-users. We recommend using FilteredCReducer to retain only terms that

are easily interpretably by end-users

 MotionPresenter which extends TypePanelPresenter to render weights of evidence as a

bar chart in a JTable

148 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

5
 V

A
L

ID
A

T
IO

N
: D

em
o

n
stratio

n
 A

p
p

licatio
n

s
 1

4
8

6.15.4 HOME ACTIVITY RECOGNIZER – HMM

(Left) The bar chart visualization explains why the application inferred Breakfast in the last minute. Each
row shows the weights of evidence for a sensor at a particular time step.

(Right) The floorplan visualization explains why the application inferred a sequence of

Sleeping → Toilet → Toilet → Breakfast → Breakfast, in the last 5 minutes.

Evidence due to features (summed across the last 5 min) are indicated by the area of bubbles around the
corresponding sensors in the floorplan. Evidence for each sensor across time is revealed in a tooltip. We
can see that the Hall Bedroom Door being open is a strong indicator of inferring the sequence. The door
being open is a stronger indicator than it being closed 4 min ago. The microwave is another strong
indicator (biggest bubble in top right corner).

Figure 6.12: Two Why visualizations for explaining a HMM to infer domestic activity.

Home Enactor
Sensors
Widget

Time
ReducerHMM

ExplainerAltQuery

Query

WhatIfQuery

Home Viewer
QueryPanel

Breakfast

Drink

Sleep

…

Sensor
Reducer

BedroomDoor

ToiletFlush

Fridge

…

Filtered
CReducer

HMM
Reference

Trained HMM

Floorplan
Presenter

Time Bars
Presenter

6.16 LIMITATIONS AND DISCUSSIONS 149

6
.1

6
 L

IM
IT

A
T

IO
N

S an
d

 D
iscu

ssio
n

s
 1

4
9

We demonstrate explanations from an HMM model using the dataset from [van Kasteren et al.,

2007] about domestic activity, and train a HMM with a sequence length of 5 min, and 1 min per

sequence step. The application takes 14 binary input sensors and infers which activity (out of

seven) the user is performing. It uses

 QueryPanel as a Querier to receive user interaction queries through text commands

 HmmExplainer to generate two-dimensional (inputs and time) weights of evidence

explanations from the HMM

 TimeReducer which extends DimensionReducer to aggregate the weights of evidence

along the dimension of time, showing weights of evidence due to input features

 SensorReducer which extends DimensionReducer to aggregate the weights of evidence

along the dimension of input features, showing weights of evidence due to time

 FilteredCReducer to select weights of evidence relevant to the input feature over time (for

a tooltip display)

 FloorplanPresenter to display the floorplan overlaid with bubbles, where their size

represents the weight of evidence due to the input feature over time

 TimeBarsPresenter to display a bar chart visualization, where each bar represents the

weight of evidence due at a specific time

6.15.5 LAΚSA — AVAILABILITY INFERENCE MOBILE APPLICATION

We have developed, Laκsa, a high-fidelity prototype of an intelligible context-aware mobile

application that further validates the Intelligibility Toolkit. It uses a version of the toolkit ported to

Android to generate explanations from rules, a decision tree, and naïve Bayes to explain inferences

of availability, motion activity, and sound activity, respectively. Section 7.2 describes the first

version of Laκsa with its intelligibility UI implemented in Java Swing for a usability study prototype,

and Section 9.3 describes the second version of Laκsa with its interface fully developed in Android

2.2.

6.16 LIMITATIONS AND DISCUSSIONS

While the Intelligibility Toolkit is extensible, the current implementation does not cover some

outstanding aspects.

150 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

7
 R

E
L

A
T

E
D

 W
o

rk
 in

 E
xp

lain
in

g C
o

n
text 1

5
0

i. There remain some types of explanations that users ask for that are not yet supported: e.g.,

how to Control an application to change its behavior (though this is supported with

Parameters in the Enactor framework [Dey and Newberger, 2009]), and Provenance

(source, credibility, and accuracy of the application inputs).

ii. Often, sensed raw inputs of context-aware applications are pre-processed, e.g., using signal

processing or computer vision techniques. Although important, the toolkit does not

currently capture and explain these pre-processing mechanisms [Patel et al., 2008].

iii. Similarly, the Intelligibility Toolkit focuses on explaining the inference of the application

model when it encounters situations, but not how the model was originally trained, or how

it continues to adapt itself (if using active learning). This may help end-users understand

how the training data may influence the application’s behavior, but may also pose a

cognitive burden on end-users to understand data-driven models.

iv. Applications may encounter behaviors due to the infrastructure rather than the decision

model or inputs. For example, unexpected behavior may result from resources suddenly

being unavailable due to connectivity issues. The toolkit does not currently support

explanations about the infrastructure.

v. The Intelligibility Toolkit provides components to facilitate the development of intelligible

applications, the automatic generation of explanations, and mechanisms for presenting the

explanations. However, it does not provide guidelines on how to present the explanations.

vi. On a related note, this work did not seek to evaluation of the impact or effectiveness of

explanations that may be generated from the Intelligibility Toolkit, but provides tools for

such investigations in the future.

6.17 RELATED WORK IN EXPLAINING CONTEXT

The Intelligibility Toolkit supports a wide range of explanations for multiple decision models.

Previous systems only covered a subset of the explanation types, and only for one or one type of

decision model.

The most similar framework to our toolkit is the Enactor framework [Dey and Newberger, 2009],

on which we base our Intelligibility Toolkit. It can provide What explanations by exposing the state

of input Widgets, and Why explanations by reporting a relevant rule. However, it does not support

the other explanation types or any models beyond rules. The Crystal framework [Myers et al., 2006]

supports only Why / Why Not explanations for desktop-based applications to explain themselves

6.18 CONCLUSION AND FUTURE WORK 151

6
.1

8
 C

O
N

C
L

U
SIO

N
 an

d
 F

u
tu

re W
o

rk
 1

5
1

through Command Objects. The Whyline [Ko and Myers, 2009] similarly explains Why / Why Not to

end-user programmers, by examining the program execution tree. PersonisAD [Assad et al., 2007]

defines a distributed framework to support What explanations by resolving identities and

associations of devices, locations, people, etc. The Intelligent Office System [Cheverst et al., 2005]

provides What explanations by showing the system state, History explanations by listing the states

across time, and Why explanations about the learned cut-points for its rules. Panoramic

[Welbourne et al., 2009] provides Why, What, and History explanations to explain location events

through a visualization of parallel timelines of sensed and rule-determined events.

While the aforementioned systems provide explanations for rules, Tullio et al. [2007] explained

interruptibility inferred from decision trees and naïve Bayes with What explanations. The

Intelligibility Toolkit can provide deeper (e.g., Why, Why Not, How To) explanations from these

models. Kulesza et al. [2009] built an intelligible email sorter that uses naïve Bayes for

classification. It provides Why, Why Not, and What If explanations based on the weights of evidence

approach [Poulin et al., 2006]. The Intelligibility Toolkit also uses this approach, and adds more

explanation types, supports numeric input features, extends it for HMMs, and has been developed

to be extensible.

6.18 CONCLUSION AND FUTURE WORK

We have presented the Intelligibility Toolkit that currently provides automatic generation of 12

explanation types for at least 10 popular inference models in context-aware applications. It

supports

i. Generating explanation structures with Explainers,

ii. Querying mechanisms to specify questions and constrain explanations with Queries,

iii. Representing explanations with Explanation Expressions,

iv. Simplifying complex explanations with Reducers,

v. Presenting the explanations to end-users and other subsystems with Presenters,

vi. Presenting interfaces to ask questions with Queriers, and

vii. Providing context-sensitive intelligibility with Selectors.

152 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6
.1

8
 C

O
N

C
L

U
SIO

N
 an

d
 F

u
tu

re W
o

rk
 1

5
2

Explanations can be provided as either rule traces or weights of evidence. The toolkit is also

extensible to support new explanation types, model types, reduction heuristics, and presentation

formats.

The Intelligibility Toolkit aims to make it easier for developers to provide many explanation types

in their context-aware applications. This ease also allows developers to perform rapid prototyping

of different explanation types to discern the best explanations to use and the best ways to use them.

By standardizing the styles of explanations, developers have many more choices when choosing

classifiers to increase application accuracy and performance, while retaining the intelligibility

features of their application, and not even needing to change explanation interfaces (especially so

for weights of evidence explanations).

In addition to addressing the limitations outlined earlier, we can use the Intelligibility Toolkit, to

pursue further research questions regarding the intelligibility of context-aware applications. In

particular, we can investigate and compare the efficacy of various explanation types, by measuring

how well each type helps users to understand the application, and improve their trust in the

application. Using the Intelligibility Toolkit, we developed an intelligible context-aware mobile

application (described in Chapters 7 and 9) with multiple explanation types, and multiple context

types (e.g., location, physical activity, sound activity), and conduct a usability and usage evaluations

of the impact of intelligibility and how well intelligibility improves understanding or corrects

misunderstanding.

153

7 DESIGNING FOR INTELLIGIBILITY

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2011). Design of an Intelligible Mobile Context-Aware Application.

In Proceedings of the 13th International Conference on Human Computer Interaction with

Mobile Devices and Services (MobileHCI '11). ACM, New York, NY, USA, 157-166.

ABSTRACT. Context-aware applications are increasingly complex and autonomous, and research

has indicated that explanations can help users better understand and ultimately trust their

autonomous behavior. However, it is still unclear how to effectively present and provide these

explanations. This work builds on previous work to make context-aware applications intelligible by

supporting a suite of explanations using eight question types (e.g., Why, Why Not, What If). We

present a formative study on design and usability issues for making an intelligible real-world,

mobile context-aware application, focusing on the use of intelligibility for the mobile contexts of

availability, place, motion, and sound activity. We discuss design strategies that we considered,

findings of explanation use, and design recommendations to make intelligibility more usable.

7.1 INTRODUCTION

In Chapter 6, we had addressed the support of intelligibility at the underlying level by automatically

generating explanation types. In this chapter, we shift our focus to the user interface level of

providing intelligibility in context-aware applications. Indeed, there have already been several

context-aware applications that support some level of intelligibility. Cheverst et al.'s Intelligent

Office System [2005] exposes sensor values, and explains its fuzzy decision tree model that controls

office appliances. Tullio et al.'s interruptibility displays [2007] explain how they determine a

manager's interruptibility by exposing the values of sensors in the manager's room. Kulesza et al.

built an email sorting application [2009] that supports Why (i.e., why the application took a

154 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.2

 L
A

Κ
SA

 ―
 So

cial A
w

aren
ess A

p
p

licatio
n

 1
5

4

particular action) and Why Not (i.e., why the application did not take a different action)

explanations for its naïve Bayes classifier. Vermeulen et al.'s PervasiveCrystal [2010] also supports

Why and Why Not explanations but for ambient environments. These systems support a limited set

of explanations users can ask for: What, Input values, Why, and Why Not. However, we found that

users ask a wider range of questions of context-aware applications (Chapter 5), and that different

explanations have different impacts on user understanding (Chapter 4).

We had developed the Intelligibility Toolkit to automatically support this wider range of

explanations. While this significantly helps facilitate the development of intelligible context-aware

applications, it remained unclear how to effectively present these explanations. In this chapter, we

advance the knowledge of how to design for intelligibility by investigating explanation design for a

real-world, mobile context-aware prototype. We focused on intelligibility for the mobile contexts of

availability, place, motion, and sound activity.

Our contributions in this chapter are the:

1. Exploration of design and usability issues in making a context-aware application intelligible,

and

2. Provision of design recommendations to address them.

The rest of the chapter is organized as follows: we describe the prototype that we developed to be

intelligible. We then describe our rationale for designing the explanations to make them more

interpretable. To discover how users use intelligibility and the usability issues that they face, we

ran an in-situ, scenario-driven, think-aloud study. We describe our experimental set up, method and

data analysis. We then describe how our participants used explanations, and discuss our

interpretations of some factors influencing their behavior. We observed how participants used

explanations differently depending on their goals, and how some participants encountered

difficulties due to their lack of prior knowledge or their chosen problem solving strategies. Finally,

we provide design recommendations arising from these observations, and describe our plans for

future work.

7.2 LAΚSA ― SOCIAL AWARENESS APPLICATION

Staying aware of others is an established need that people have [Oulasvirta, 2005]. Between close

friends and family members, this can help people feel a greater sense of connectedness as each

7.2 LAΚSA ― SOCIAL AWARENESS APPLICATION 155

7
.2

 L
A

Κ
SA

 ―
 So

cial A
w

aren
ess A

p
p

licatio
n

 1
5

5

person goes about their daily activities. Between coworkers, this can inform people of the most

suitable times to contact them. We have developed Laκsa, a mobile application that shares people’s

availability status. Laκsa is an acronym for Location, Activity, Connectivity (κ), and Social

Awareness that describe its function. Availability is determined from six lower-level contexts: Place,

Motion, Sound activity, phone Ringer, Schedule, and who is enquiring (Contactor). While similar to

CenseMe [Miluzzo et al., 2008], it uses a slightly different set of contexts, aggregates them into an

availability context through rules (rather than just showing all contexts as presence information),

and is intelligible, such that it can explain its complex behavior.

Our focus in this chapter is the use of Laκsa as a vehicle to explore the design, implementation, and

use of intelligibility in a sophisticated, multi-factor context-aware application. In the rest of this

section, we shall describe the various contexts that Laκsa employs, briefly describing their

implementation. Laκsa is designed to support the complexities of availability in social relations by

considering availability as multi-faceted, and multi-factored. One's availability depends on who is

asking (different facet for different viewer), and on contextual factors (e.g., Place, Motion, Sound).

Figure 7.1 describes Laκsa's context hierarchy. We designed Laκsa to be sophisticated in using

many contexts, and complex sensing and inference mechanisms, to exemplify how context-aware

applications can manage many factors that users would find cognitively difficult. We anticipate

users will ask for explanations to determine or remember Laκsa's complex mechanisms. Next we

describe the contexts Laκsa models.

Top-tier Context Availability

Intelligibility

Explanations

Lower-tier Contexts
Place, Motion, Sound,

Ringer, Schedule, Contacter

Lower-tier Input Features
Latitude, Longitude; Energy, Mean,

Standard Deviation; MFCCs, etc.

Sensors and Sources
GPS, Wi-Fi; Accelerometer; Microphone;

Phone State, Calendar, etc.

Figure 7.1. Laκsa context architecture with different tiers of context used to infer higher-

level tiers. The user sees the Availability status, and the intelligibility explanations.

Availability: Available, Semi-Available, Unavailable — is determined based on rules regarding the

following six factors. The contactor interprets the availability and decides whether to contact and

how (call, text, email, etc.).

156 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.2

 L
A

Κ
SA

 ―
 So

cial A
w

aren
ess A

p
p

licatio
n

 1
5

6

Contactor (Who is Enquiring): Family, Friend, Coworker, and Default (to check user's default

status) — categorizes person contacting or enquiring about the user.

Place: Home, Office, Café, Library, etc. — represents the semantic location of the user. It is

computed by sensing latitude and longitude from the Skyhook Wi-Fi API (uses a hybrid GPS, Wi-Fi,

and cell tower positioning algorithm), and matching to a pre-determined named location that the

user specifies. To convey accuracy, it also reports the sensed distance error and detected number of

access points.

Motion: Sitting, Walking, Cycling, Placing the phone Flat, etc. — represents the user’s physical

activity inferred with the phone placed in a front pants pocket. Inferences are made with a decision

tree trained using activities from several users. Features extracted from the accelerometer are

similar to [Bao and Intille, 2004; Lester, Choudhury, and Borriello, 2006]: e.g., mean and standard

deviation for three axes, phone orientation angles, and signal powers.

Sound: Talking, Music, and Ambient Noise — represents the sound activity that Laκsa recognizes

from what it can hear from the phone's microphone. Inferences come from a naïve Bayes classifier

trained on sound samples. Features extracted are similar to [Lu et al., 2009]: e.g., mean and

standard deviation of power, low-energy frame rate, spectral flux, spectral entropy, spectral

centroid, bandwidth, Mel-Frequency Cepstral Coefficients (MFCCs).

Phone Ringer: Silent, Vibration, or Normal — represents the volume state to which the phone

ringer has been set.

Calendar Schedule: Personal, Work, or Unscheduled — represents the user’s Google Calendar, and,

in particular, which calendar the current event is in.

While one could compare the use of explanations for different contexts (e.g., Place, Motion, Sound)

and different decision models (rules, decision trees, naïve Bayes), for this formative work, we focus

on exploring the design and use of explanations across this breadth of factors.

7.3 DESIGN OF INTELLIGIBILITY 157

7
.3

 D
E

SIG
N

 o
f In

telligib
ility

 1
5

7

7.3 DESIGN OF INTELLIGIBILITY

Having defined the context types, we seek to make Laκsa intelligible so that users can understand

what it knows and how it makes decisions about user availability. We employ explanations

supported by the Intelligibility Toolkit (Chapter 6):

1. What is the value of the context?

2. Why is this context inferred as the current value?

3. Why Not: why isn’t this context inferred as Y, instead?

4. How To: when would this context take value Y?

5. Inputs: what details affect this context? (Factors, input features, related details, etc.)

6. Outputs: what other values can this context take?

7. What if the conditions are different, what would this context be? (Requires user

manipulation)

8. Certainty: how confident is Laκsa of this value?

9. Description: meaning of the context terms and values.

Explanations generated from the Intelligibility Toolkit contain the information content to answer

these nine questions and can be rendered using simple text templates. However, these may not be

easy for lay users to interpret or quickly assimilate. Therefore, we employed several design

strategies to help make the explanations more usable. Figure 7.2 and Figure 7.3 show some

explanation user interfaces resulting from the strategies described next.

158 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.3

 D
E

SIG
N

 o
f In

telligib
ility

 1
5

8

(a)

(b)

(c)

(d)

a) This is the core information to show the Availability status that Laκsa has inferred. It shows the user
or buddy’s picture, name, and Availability status. It also shows the time since the last change.

b) To ask for an explanation, first select which context you would like to ask about by selecting one of
these seven Context Tabs. Each tab shows the current value of the context (What explanation), e.g.,
Sound = Talking.

c) Next, you ask a specific question from the drop-down menu. The Question Panel adapts to the
question selected (e.g., Why, Why Not, What If).

d) The resulting explanation is rendered in the Explanation Panel. List visualization: the left screenshot
shows a reason with a list of multiple factors. Some explanations have multiple alternative reasons,
shown in different sub-tabs.

Figure 7.2. Screenshot of the Laκsa showing how to use the components in the core and

intelligibility user interface.

7.3.1 REDUCING AND AGGREGATING EXPLANATIONS

We expect that users of context-aware applications would rather be focused on their day-to-day

tasks than dedicate too much attention to technical details. Hence, it is important to simplify and

reduce the provided explanations to be concise and salient. We have done this for Laκsa by

aggregating explanation types (e.g., What value and Certainty rating shown together), reducing the

number of reasons, length of reasons, and number of input features (e.g., omitting MFCCs for

sound); and combining explanations for simultaneous consumption (e.g., presenting x-y-z

accelerometer values in 2D diagrams). While this may compromise comprehensiveness, it is

intended to make the explanations more interpretable.

7.3 DESIGN OF INTELLIGIBILITY 159

7
.3

 D
E

SIG
N

 o
f In

telligib
ility

 1
5

9

(a) Map visualization explaining with 'bubble'
components. Blue bubble indicates estimate of
current location; green dotted bubble indicates
specified region of named location.

Why is my Place inferred as "Office"? Because
your estimated location bubble overlaps with the
bubble specifying where Office is.

(b) Physical Diagram visualization illustrating
the interpreted mechanical motion of the phone
leading to its inference of cycling (two shown
here). Dotted lines and arrows or shading show
boundary conditions of rules of the decision tree
model. Users can mouse over the diagram to see
textual explanations with numerical values.

Why isn't Motion inferred as "Cycling"?
Because the phone is oriented more than the
drawn angle, the vigorousness detected is below
the illustrated value, etc.

(c) Metaphorical visualization of sound feature
values that was sensed and computed at a
specified moment (two shown here). This can
show current values sensed, or average values for
each possible outcome.

What details (Inputs) affected the Sound
inference? 48% of the sound heard was
relatively silent (Periods of Silence); the range of
pitches heard was from 1140 to 2623Hz (this can
be played aurally for the user to listen to), etc.

(d) Weights of Evidence visualization. Bar chart
visualization showing weights of evidence voting
for or against the inference of Talking. Weights
are represented by the length of each bar; color
and positioning indicate evidence for or against.
Not all factors shown.

Why isn't Sound inferred as "Talking"?
Because most of the factors vote for the inference
of Music (especially hidden features, the sound
Volume, Periods of Silence, etc); only Pitch
Fluctuation votes for Talking.

Figure 7.3. Explanation Visualizations rendered in the explanation panel. Some examples

and their interpretations. The UI uses icons derived from [Fatcow].

7.3.2 VISUALIZING EXPLANATIONS

Users should more quickly assimilate visual explanations because of the higher bandwidth of

diagrams [Ware, 2000]. Hence, we provide several visual representations: icons for context and

feature values, dynamic diagrams that change when values change, and even animation and sound

The location is 142 meters
from Office

160 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.3

 D
E

SIG
N

 o
f In

telligib
ility

 1
6

0

(to hear pitches and pitch ranges). Visualizations are customized for the context domains (e.g., map

for Place, physical 2D phone diagram for Motion). Since Sound is not visual, we chose to explain

sound by metaphor (e.g., showing a pan flute to represent pitches and ranges; see Figure 7.3c).

7.3.3 EXPLAINING IN SIMPLE AND RELATABLE TERMS

As we deploy intelligibility in real-world prototypes, users need to understand how the contexts

and recognition features relate to the real world, using lay concepts. Therefore, we simplify names

(e.g., "spectral entropy" renamed to "pitch pureness", "low-energy frame rate" renamed to "periods

of silence"), normalize numerical values to lay scales (e.g., 0 to 100), and include Description

explanations that describe what each context factor and feature mean. Descriptions are presented

in physical rather than system terms (e.g., there are more periods of silence for talking than ambient

noise, because there are significant pauses in speech that are relatively quiet). Furthermore,

features for Motion and Sound were scaled to physically meaningful names and values (e.g.,

vigorousness to represent accelerometer signal power in Watts). We also chose to visualize

explanations for motion using first principles. For example, orientation information is shown as the

orientation of the phone relative to the ground (see Figure 7.3b). Note that ensuring that terms are

domain relatable may require significant domain knowledge, rather than just naïvely applying

effective features identified in the literature about activity recognition (e.g., [Lester, Choudhury, and

Borriello, 2009; Lu et al., 2009]).

7.3.4 PROVIDING EXPLANATIONS FOR CONTROL

We chose to provide explanation types for each context only if users could leverage the information

to improve Laκsa, or change their behavior. What If explanations are only provided for the top-tier

Availability context. For other contexts, users would not be able to meaningfully change the input

features (e.g., changing the entropy or frequency to influence sound). Furthermore, we omit trivial

explanations, e.g., asking What If one is at a specific coordinate location to learn which semantic

place Laκsa would infer the user being at; asking Why Not questions about manually set contexts

(e.g., schedule or ringer mode).

We iterated on the design of Laκsa with these strategies and feedback from colleagues who are

active HCI researchers.

7.4 LAΚSA PROTOTYPE IMPLEMENTATION 161

7
.4

 L
A

Κ
SA

 P
ro

to
ty

p
e Im

p
lem

en
tatio

n
 1

6
1

7.4 LAΚSA PROTOTYPE IMPLEMENTATION

We built Laκsa using a client-server architecture. Sensing of low-level contexts (e.g., latitude,

longitude coordinates, accelerometer, microphone) was performed on an Android mobile phone,

and some intermediate features (e.g., discrete Fourier transform, entropy, energy) were computed

on the phone. The extracted features are then sent via XMPP to a server for further processing. On

the server, we modeled the contexts for users with the Enactor framework [Dey and Newberger],

and used the Intelligibility Toolkit [Lim and Dey, 2010] to support the querying for various

questions, generation and reduction of explanations about the contexts, and presentation of the

explanations in various graphical and textual formats.

To measure how participants use the Laκsa interface, and to support rapid prototyping, we

developed the interface on a touch screen tablet, rather than on the mobile phone. Users interact

with the UI with a mouse, pen stylus, or finger. The latter interaction closely resembles cell phone

interaction.

7.5 LAΚSA PROTOTYPE USAGE

Users ask for explanations by selecting a question from the drop down menu (see Figure 7.2a). Each

question only pertains to the particular context of focus (e.g., Availability). To ask about another

context, the user selects the context by its tab (Figure 7.2b), and asks the questions in the panel

(Figure 7.2c). The resulting explanation appears in the Explanation Panel (Figure 7.2d; Figure 7.3;

Table 7.1).

1
6

2
 C

H
A

P
T

E
R

 7
 | D

E
SIG

N
IN

G
 F

O
R

 IN
T

E
L

L
IG

IB
IL

IT
Y

 Description / Function Availability Place Motion Sound

What Shows current value / state of context.
Value

Map

(location bubble)
Value Value

Why Shows a model-based explanation of
how Laκsa inferred the current output
value (outcome).

List

(multiple conditions)

Map

(user & actual place
bubbles overlapping)

Physical Diagram

(with boundary
conditions)

Weights of Evidence

Why Not Shows a model-based explanation
distinguishing how Laκsa did not infer
the alternative output value.

Multiple Lists

(multiple conditions)

Map

(user & desired place
bubbles separated)

Physical Diagram

(with boundary
conditions)

Weights of Evidence

How To Shows a model-based explanation of
how Laκsa typically or generally infers
the target output value.

List

(required conditions)

Map

(actual place bubble)

Physical Diagram

(of average input
values for desired

outcome)

Metaphorical Viz.

(of average input
values for desired

outcome)

Inputs Shows the current values of input
context / features.

List

(current input
values)

List

(latitude, longitude)

Physical Diagram

(of current input
values)

Metaphorical Viz.

(of current input
values)

Outputs Shows possible output values the
context may take.

List (possible output values)

What If Shows a UI to allow the user to specify
different input values and see what the
output value would be.

Editable List

(of current input values)

Certainty Shows the certainty or confidence of
Laκsa ‘s inference of the current
context value.

List

(distance error,

access points)

% Certainty

(of inference)

% Certainty

(of inference)

Description Shows terminology or description of
context / feature.

Text (sentences)

Table 7.1. Explanation Visualization Types for each context, and question type. Only the What value is shown for Ringer,

Schedule, and Contactor. Note that Certainty is shown together with both What

7.6 SCENARIO-DRIVEN THINK ALOUD USER STUDY 163

7
.6

 S
C

E
N

A
R

IO
-D

R
IV

E
N

 T
h

in
k

 A
lo

u
d

 U
ser Stu

d
y

 1
6

3

7.6 SCENARIO-DRIVEN THINK ALOUD USER STUDY

To explore the use of the intelligibility features in Laκsa, we conducted a scenario-driven user study

where participants think aloud as they used it. This was an exploratory study where we

investigated how and why participants used intelligibility, and how this use impacts their

understanding of Laκsa. We conducted an in-situ controlled study rather than a field deployment

for two main reasons: (i) to present participants with a lower-fidelity interface to elicit more

feedback from the think aloud study, and (ii) to avoid having serious usability issues that could

confound results in a field study, where it would also be harder to monitor participants' usage and

rationale.

7.6.1 PROCEDURE

The experiment began with the first scenario (see later) as a training session, where the

experimenter explained the function of the Laκsa prototype as an availability awareness

application, its sensing capabilities, and its intelligibility features. Participants verified that they

understood the interface and explanations by stepping through the interface themselves and

thinking aloud what they understood Each subsequent scenario involved participants moving

around the university campus to a respective location (e.g., library, café, office) and engaging in a

specific activity (e.g., walking, cycling). An experimenter shadowed the participants all the while.

The participants were then told of an incident (e.g., having one’s phone ring loudly while searching

for a book in the library) and the phone's subsequent behavior. They were asked for their opinion

of the situation, and of the behavior of the application. They were then asked to explore Laκsa to

find out what is really happening or to clarify the situation. The participants were prompted to

think aloud as they did this, and the experimenter probed for clarification. For each scenario, we

recorded what participants did and said during the think aloud. Finally, we interviewed them about

their opinion and understanding of how Laκsa sensed and inferred contexts.

7.6.2 CONTROLLED IN-SITU SCENARIOS

The user study was scenario-driven to expose participants to a wide range of situations they may

encounter with Laκsa. To increase the visceral quality of the scenarios, we engaged the participants

in actually physically performing the tasks in-situ, rather than just imagining themselves in the

respective environments and situations. For example, we had participants go into a library to look

for a book (S4 below), and ride a stationary bicycle (S5). To better control conditions, we simulated

164 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.6

 S
C

E
N

A
R

IO
-D

R
IV

E
N

 T
h

in
k

 A
lo

u
d

 U
ser Stu

d
y

 1
6

4

the sensor data that Laκsa used for each scenario. The data is based on previously recorded real

data of several users performing the respective scenarios. We asked participants to wear pants with

front pockets to facilitate placing the mobile there and to allow comfortable cycling. To further

control for experience, we provided participants with a fixed set of personal availability rules (see

Table 7.2).

Availability Location Motion Sound Ringer Schedule
 Who’s

Enquiring

Unavailable

Office

Silent

Anyone

Unavailable

Office

Talking

 Anyone

Unavailable

Work Friends

Semi-Available Library

Anyone

Semi-Available

Home

Coworkers

Semi-Available

Cycling

 Anyone

Available

All other cases

Table 7.2. Personal availability rules participants were told were pre-programmed into

Laκsa for the user study scenarios.

We employed seven scenarios to span three situational dimensions: (i) Exploration / Verification

(S1, S2, S5) where Laκsa behaved appropriately and participants are asked to explore and verify the

interface; (ii) Fault Finding (S3, S4, S7) where Laκsa apparently or actually behaved

inappropriately, and participants had to debug what really happened; (iii) Social Awareness (S6,

S7) where participants investigated information and explanations about hypothetical buddies that

they naturally had less awareness of. We measured their desire to contact their buddy in the latter

scenarios to gauge their trust of Laκsa.

S1: Sitting in office talking. Training session where the participant learned Laκsa’s core features

and explanations.

S2: Walking outdoors. Verification/exploration task where participants investigated explanations

of Place and Motion.

7.7 DATA ANALYSIS 165

7
.7

 D
A

T
A

 A
n

aly
sis

 1
6

5

S3: Missed contact. The participant was asked to find out why she was considered not available to

a friend, even though she was. This is a false-positive error condition where Laκsa actually behaved

correctly, but given that availability is multi-faceted (i.e. different statuses to different viewers), the

participant may not realize this.

S4: Library interruption. The participant walked to a nearby library to search for a specific book.

She needed to squat to retrieve the book on the lowest shelf. As she was looking for the book, the

phone rang (the experimenter invoked a ringtone in the library), indicating a call from a coworker.

The participant was asked to determine why she was not seen as unavailable. This is a true-positive

error condition where we simulated Laκsa making a mistake.

S5: Cycling in gym. Exploration task for participants to explore how Laκsa tracks their cycling in a

gym location.

S6: Friend available. The participant was asked to check Laκsa to help decide whether to contact a

friend.

S7: Friend talking inferred as music. The participant was asked to find out why, when the friend

was actually in a meeting, Laκsa made the error of telling her that the friend was Available, at the

office listening to music, and had nothing scheduled.

7.6.3 PARTICIPANTS

Using a local recruiting website, we recruited 13 participants (8 females) with a mean age of 26.4

years (range: 18 to 37). P2 was dropped because he did not continue beyond the training scenario.

Four participants were students (one undergraduate). Only P1 was trained in a computer-related

field (information systems), while the others spanned a wide range of areas (e.g., rehabilitation,

mathematics, materials science and engineering, human resources). We engaged each participant

for 2.5 hours on average (range: 2 to 3.5). Due to the length of each scenario, each participant

experienced between 3 and 6 scenarios (median=4), selected to try to balance coverage.

Participants were compensated $10/hr.

7.7 DATA ANALYSIS

We transcribed the think aloud and interview data, segmented by speaker (interviewer /

interviewee). The transcript was coded by question type (e.g., Why, Why Not, What If), goal /

intention / rationale (verified during interviews), feature requests, breakdowns / struggles (e.g.,

too many questions to choose from), and extent of (mis)understanding. We formed sequence

166 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.8

 F
IN

D
IN

G
S ―

 P
attern

s o
f In

telligib
ility U

se
 1

6
6

models of the usage of question types, and consolidated them (e.g., see Figure 7.4). We interpreted

the findings and models to identified causal factors. This was assembled into higher-level themes

using an affinity diagram (selection based on theme convergence, importance, and novelty).

Next, we describe our observations of how participants used Laκsa, focusing on how they asked for

various explanation types. Table 7.3 summarizes how much participants understood Laκsa's

inference in each scenario.

Table 7.3. Participant results in scenarios showing how each participant performed for each

scenario as he or she used explanations provided in Laκsa. Note that columns are arranged

in categories, not by sequence of presentation.

7.8 FINDINGS ― PATTERNS OF INTELLIGIBILITY USE

We found different usage of explanations for the three different situational dimensions presented in

the scenarios: exploration / verification, social awareness, and fault finding.

7.8.1 EXPLORATION / VERIFICATION

We observed that participants explored all explanation types as they tried to learn how Laκsa

functioned, and more about the scenarios. Naturally, participants used the Description explanations

to remind them what the terms and concepts meant, and used the Inputs explanation to examine

deeper states that affect inferences (e.g., for S3, P11 used the Inputs explanation of Availability to

Exploration /
Verification

Fault Finding

Social Awareness

P1 P13
P3 P1

P3 P3 P4 P4
P1 P1 P6 P7
P9 P5 P4 P7 P8
P5 P6 P3 P8 P12
P6 P7 P6 P10 P5 P5

P11 P9 P8 P5 P11 P6
P13 P12 P12 P7 P13 P10

S2
Walking

Outdoors

S5
Cycling in

Gym

S7
Talking as

Music

S6
Friend

Available

S3
Missed
Contact

S4
Library

Interruption

Gave up / Failed

Misunderstood

Struggled to understand

Effectively understood

7.8 FINDINGS ― PATTERNS OF INTELLIGIBILITY USE 167

7
.8

 F
IN

D
IN

G
S ―

 P
attern

s o
f In

telligib
ility U

se
 1

6
7

see a “summary of her statuses”). How To explanations were used in two ways: P11 appreciated

learning new concepts about inferring Sound (through periods of silence, pitch ranges, etc.); for S3,

P6 checked to see when she would be Unavailable. Finally, some participants asked What If to

preemptively test troublesome or critical situations to see how Laκsa would respond under those

circumstances; e.g., for S3 during a lull period, P3 and P5 confirmed that they remained available to

family members in an emergency.

7.8.2 SOCIAL AWARENESS

For S6 and S7, participants had less first-hand knowledge of the actual situation about their buddy

than about themselves. We observed that they mainly focused on the Input explanation of

Availability (or equivalently, What explanations of the lower-level contexts). For example, P6 first

checked the Input values of Availability to determine the state of her friend (in S7). Participants

would then form stories about what they believed their buddy could be doing at the time; e.g.,

having seen the Motion inferred as “Other” (placed flat) for S6, P9 presumed his friend was

“probably sleeping or taking a nap or eating or something that would probably involve not wanting

a phone call.” When he subsequently looked at the Sound inference, he said “sound is 78%, oh he is

listening to music, so I guess I could intrude if I want to, but then I get he might be with someone

else too.” At this point, most participants did not continue by asking other questions. However, for

S6, P7 asked When would her friend be Semi-Available (How To) to learn the rules her friend had

set.

We found that once participants perceived that the availability status was inferred inaccurately or

erroneously, they explored other questions and investigated more deeply. This is similar to how

participants investigated anomalies with explanations about themselves (discussed next).

7.8.3 FAULT FINDING

Participants used explanations most when perceiving that Laκsa behaved unexpectedly. Figure 7.4

summarizes the sequences of how participants asked for various explanations (labels refer to

observations described in the following text). The choices of questions were slightly different when

investigating the top-tier Availability than the lower-tier contexts (Place, Motion, and Sound).

168 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.8

 F
IN

D
IN

G
S ―

 P
attern

s o
f In

telligib
ility U

se
 1

6
8

Top-tier

Rule-based Context

(Availability)

Lower-tier

Sensed / Inferred Contexts

(Place, Motion, and Sound)

Figure 7.4. Consolidated sequence models of explanation use for Fault Finding. Steps were

abstracted from individual actions that participants took across scenarios S3, S4, and S6.

7.8.3.1 TOP-TIER, RULE-BASED AVAILABILITY

When participants realized that the Availability was wrong, some instinctively first selected the Why

question (Figure 7.4: 1). P6 first asked why about her Availability in S3 and S4, and why her Place

was inferred as Office in S4. When explaining her rationale to first select why (S4), P12 said

"because I want to know why…why I'm available." This suggests a linguistic cue for asking Why first.

Alternatively, sometimes participants first inspected the state of the application by asking for Input

values (2). For S3, by examining the Input values, P11 discovered that “the Talking and possibly the

Work [category] in the schedule [were] the two that led my status to be unavailable.” For S4, P6 and

?

Why Inputs

?

What
If

1 2

3a
4

3b

What

How
To

Why
Not

?

Why

?

5 6

7

What

Certainties

Certainty

Outputs

?

Why
Not

8b

8a

Inputs
How

To

?

7.8 FINDINGS ― PATTERNS OF INTELLIGIBILITY USE 169

7
.8

 F
IN

D
IN

G
S ―

 P
attern

s o
f In

telligib
ility U

se
 1

6
9

P12 quickly discovered that the Place inference (as Office) was erroneous (should be Library

instead).

If participants had an expectation of what the availability should be, they would ask about the

expected outcome using Why Not or How To questions (3a, 3b). These represent different

strategies to address this goal-oriented query. Interestingly, some participants asked How To

instead of Why Not, even though the latter was more concise; e.g., for S4, P7 asked When would

status be Semi-Available (How To) to manually identify erroneous conditions out of three. Had she

asked “Why isn’t status Semi-Available”, she would have seen the single condition that was

specifically identified to be relevant to the scenario. Unfortunately, some participants

misunderstood the How To explanation, e.g., for S7, when P4 asked “When would Sound be

Unavailable,” he interpreted the requirement that his friend has to be Talking to represent that his

friend was currently sensed as talking; for S4, P7 examined the rules for when she would be Semi-

Available (as she had expected status to be), found the condition Place = Library, and

misunderstood that to mean that Laκsa had correctly inferred her location. Another reason for the

lack of use of Why Not could be that the explanations with contrapositives put off users from using

Why Not more: P6 complained about the “excessive use of negatives.”

Some participants simulated conditions they expected to be true with the What If explanation (4), to

see if Laκsa would infer an expected Availability. For S4, P8 asked What If, setting Place to Library

(which she believed to be ground truth), and Ringer to Silent (which she believed she should have

set). This resulted in the status of Semi-Available, which was correct unlike the actual inference of

Available, and indicated that while the rule was executed correctly, possibly something was sensed

wrongly. Unfortunately, participants were prone to carelessness: while setting up the expected state

for S2, P6 changed three contexts (Place = Café, Motion = Sitting, Contacter = Friends), but failed to

notice her schedule was set to Work (a pivotal factor to determine her status to friends). She

expected her status to appear as Available, but it appeared as Unavailable instead; for S4, P13

forgot to set Place to Library (left as inferred value Office) when trying to verify the inferred

availability.

Using the aforementioned strategies, some participants may decide to add a new rule or modify one

to fix the anomaly, and this may be a satisfactory solution. However, most of the problems in the

scenarios are due to faults at the lower-tier context inference. To investigate further, they would

select the suspect context by clicking on the respective tab.

170 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.8

 F
IN

D
IN

G
S ―

 P
attern

s o
f In

telligib
ility U

se
 1

7
0

7.8.3.2 LOWER-TIER, SENSED / INFERRED CONTEXTS

Once again, participants instinctively asked Why (5): e.g., for S2, P9 asked Why to see “that map

thing,” the Map visualization showing which place his location overlapped with; for S2, P6 asked

Why Motion was inferred as Walking, only paying attention to which features were listed, and not

paying attention to the boundary conditions; for S3, P6 first asked Why Sound was inferred as

Talking, but found that unhelpful.

Participants also paid attention to the inference Certainty (6). For S6, after noting a Sound certainty

of 73%, P10 mentioned that as long as it was above 50%, that was “good enough.” For S7, P12

accepted the inference for Sound as Music (93% certainty), because it was above 90%.

Subsequently, he was confused when this inference turned out to be wrong. When in doubt of the

current inference, some participants also made it a point to find out which other Output values

were plausible through their Certainties (7); e.g., for S6, P6 checked the certainty of inferring Sound

as Talking (8%), grew wary that the actual inference (Music at 73%) may be wrong, and became

hesitant to contact his buddy. For S4, P12 wanted to see whether Laκsa recognized squatting, and

seeing Certainties of 67% for Standing and 33% for Cycling, he accepted that “cycling is kind of like

squatting” and “partially standing.”

When asking about an expected outcome or exploring an alternative outcome with a noticeably high

certainty, participants similarly demonstrated two dominant exploration strategies: asking Why

Not (8a), or How To together with Inputs (8b). Asking Why Not provides a concise explanation that

directly compares the actual inference with the desired outcome. For S4, immediately after noticing

a wrong Place inference, P5, P6, P12 asked Why Not to see why their location bubble did not

overlap with the bubble for Library. For S5, P5 used the Why Not Physical Diagram to explore how

Running was not inferred (Cycling was). For S7, P6 became uncertain after noticing, from the

Weights of Evidence visualization, that Pitch Fluctuation strongly voted for inferring that her friend

was Talking, while every other factor voted for Listening to Music (see Figure 7.3d). However, we

found that many participants disliked the explanations as being too technical, particularly, the

Physical Diagrams for Motion. In fact, for S5, focused on Cycling, P7 avoided the Motion diagrams of

the Input, Why, and Why Not explanations. For S6, P9 found the Weights of Evidence visualization

explaining “Why isn’t (Why Not) Sound Ambient Noise” confusing (difficult to remember what icons

meant), and preferred to just look at the Output Certainty of Ambient Noise. Other participants

alternatively used the How To explanation in conjunction with Inputs, by manually comparing the

two explanations; e.g., for S6, P9 repeatedly toggled between the How To and Inputs metaphorical

7.9 DISCUSSION ― THEMES OF INTELLIGIBILITY USE 171

7
.9

 D
ISC

U
SSIO

N
 ―

 T
h

em
es O

f In
telligib

ility U
se

 1
7

1

diagrams for Sound. He studied Pitch Pureness to see if the current Input value (=29) was “just

about right” compared to the average value for Music (=34), and accepted the Sound inference of

Music. After several exposures to both techniques, P12 realized (in S5) that the Why Not

explanation for Motion provided similar information as How To + Inputs, and required less effort to

inspect.

7.9 DISCUSSION ― THEMES OF INTELLIGIBILITY USE

We created an affinity diagram of our coded findings to map out core issues and patterns of use.

Here, we present the top three high-level themes of how, and why participants used or failed to use

the intelligibility features.

7.9.1 INFORMATION OVERLOAD AND EXPLANATION DETAIL

While we intend explanations to express a comprehensive view of what Laκsa knows and how it

infers, we run into the problem of information overload. Comprehensive explanations are too long

and complicated for end-users. Even though we took several steps to reduce the explanation

complexity, participants still complained about the remaining complexity. P1 pointed out (as

expected) that there were too many questions to choose from, and she did not necessarily know

which was best for her goals. P3, P7, P8, and P9 also complained about the large number of reasons

provided for Availability explanations (up to 9), and the large number of Input features described

for Motion and Sound. In fact, P3 suggested showing up to 3-4 reasons, most participants only paid

attention to 1-3 features of Motion (especially just vigorousness and movement), and Sound

(periods of silence, pitch range, pitch pureness). When trying to determine her friend’s availability

for S6, P10 grew tired of asking for explanations. She felt “like it was information overload,” and

that she “started getting less information about what he was doing.” She started doubting whether

her friend was actually listening to music or sleeping instead. Clearly, our lay users did not want a

lot of explanation detail.

Furthermore, participants preferred Certainty explanations because of its single value (e.g., P9).

Similarly, P12 eventually showed a preference for the more concise Why Not instead of How To

explanation for explaining Sound. While participants found the Motion and Sound Input feature

details interesting, they also found them too technical for such a lay-user application (e.g., P3, P7).

172 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.9

 D
ISC

U
SSIO

N
 ―

 T
h

em
es O

f In
telligib

ility U
se

 1
7

2

7.9.2 PRIOR KNOWLEDGE AND RELATABILITY

It is well-known that prior knowledge plays a role in learning and understanding, and we observed

how that influenced how participants used and interpreted explanations. For example, since Laκsa

uses access points to sense location, the geographical distribution of these points affects the

inferred location, and the distance error. However, P4 did not know this, and had no idea in S4 that

Place was wrongly inferred as not being the Library.

This problem was more widely manifest in a usability issue: some participants wanted to see

explanations framed in terms relatable to their activity; e.g., for S5, P1 wanted Motion vigorousness

to be stated as “within the walking or running range” or in terms of exercise "high or low intensity".

She found forces and orientation unhelpful to understand her exercise. While this can clearly help

users in making sense of input values, this is less feasible if an input has multiple ranges of values

for certain outcomes (e.g., multiple ranges of orientation angles for sitting due to different resting

angles of the phone in a pocket).

The participants' use of Inputs and How To explanations for a comparative method to derive a Why

Not explanation also suggests this need to frame sensor features in terms of well-understood

activities. For S7, to convince themselves that a sound heard was really talking, participants looked

at the feature values in Inputs (representing the current state), and values typical of Talking (found

by asking How To).

7.9.3 DIFFERENT STRATEGIES IN PROBLEM SOLVING

We observed that some participants employed suboptimal problem solving strategies to try to

determine how Laκsa made inferences. We observed a lack of strategy and logical fallacies such as

causal oversimplification. Even when provided with various explanation tools, some participants

did not know how to effectively use them. For S2, P11 sequentially explored questions in the drop-

down list of questions, while others (e.g., P6, P12) chose the Why explanation instinctively. Many

participants also asked How To to get a Why Not explanation. This required them to do manual

work to identify which reason was relevant, when Why Not would have automatically selected it.

Participants also exhibited common logical fallacies. Many participants exhibited causal

oversimplification [Damer, 2009], because as they looked at reasons (e.g., from Why, Why Not), they

mistakenly fixated on a single factor and ignored others. P6 and P11 felt that Schedule was the

“explicit way” of saying whether they were available (S2). P4 thought that since his friend was at

7.9 DISCUSSION ― THEMES OF INTELLIGIBILITY USE 173

7
.9

 D
ISC

U
SSIO

N
 ―

 T
h

em
es O

f In
telligib

ility U
se

 1
7

3

the office (S7), then he must be Unavailable, even though he also would have needed to be talking.

Having formed this wrong belief that his friend must be busy, P4 persisted in looking for clues to

verify his hypothesis, rather than revise it. He was thus unable to identify the problem without help

from the experimenter.

7.9.4 BLAME SHIFTING

Figure 7.5: Blame shifting during S4 about mistakenly receiving a phone call in the library.

We observed participants shifting blame attribution in several scenarios, particularly, S4 where the

participant received a loud call while at the library (see Figure 7.5). Participants changed who or

what they attributed blame to after carefully considering what they knew, and viewing Laκsa’s

explanations. Immediately after receiving the interruption, P1, P7, P8, P12 reacted instinctively and

were annoyed with Laκsa (1a), while P6, P13 were self-judgmental and felt they forgot to silence

the ringer appropriately (1b). On reflection, P7, and P12 realized their coworker should have seen

their Place and known not to call them. They would then blame their coworker for violating social

norms (2). After looking at the availability status displayed, participants realized Laκsa was indeed

wrong, and all participants shifted blame to Laκsa (3a, 3b). However, after viewing explanations

and finding out that the status error was due to a poor location sensing (and both Library and Office

in tight proximity), participants had different reactions. P8 and P12 continued to blame Laκsa for

its imprecise sensing, and even became harsher in their judgment, because they (incorrectly)

expected indoor location sensing to be as precise as contemporary GPS devices (4a). On the other

hand, P6, P7, and P13 forgave it because they understood how challenging it was to sense location

in the given circumstance, and understood that they would have to change a setting to improve

sensitivity (4b). This supports findings about reduced blame attribution when autonomous robots

explain their actions [Kim and Hinds, 2006]. While one might assume explanations improve

App. Buddy

Self?
1b

1a
2

3b

4a

4b

3a

174 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.1

0
 D

E
SIG

N
 R

eco
m

m
en

d
atio

n
s F

o
r In

telligib
ility

 1
7

4

perception and trust of Laκsa, this observation reveals explanations to be a double-edged sword:

revealing the challenges of inference in some situations, or exposing the application’s weaknesses.

7.10 DESIGN RECOMMENDATIONS FOR INTELLIGIBILITY

Drawing from our design exploration and user study, we present some recommendations on how to

improve the usability of intelligibility that can be applied more generally to context-aware

applications.

7.10.1 REDUCING AND AGGREGATING EXPLANATIONS

We had originally employed this strategy before the user study when designing Laκsa, and found

this to be even more crucial based on our study results. In fact, participants demanded an even

lower level of detail, wanting to see more details only as needed. Hence we continue to recommend

this requirement. One compromise would be to allow incremental access to more detail on demand

and offer significantly reduced explanations initially. Alternatively, it could be even better to

present them in a form that is concise but does not compromise by omitting any reasons. Finding

How To explanations cumbersome due to the large number of tabs to see multiple reasons, P1

suggested just presenting the rules in a table instead. This would provide a bird's eye view of the

rules and yet be much easier to access. Furthermore, because some participants found some

features for Motion and Sound to be overly technical, it may be sufficient to filter them out of

explanations rather than make them physically meaningful, or provide metaphors to explain them.

However, it is unclear whether users want to see them when encountering more serious and

esoteric debugging problems.

7.10.2 RETOOLING EXPLANATIONS WITH SIMPLER COMPONENTS

Several participants (e.g., P6, P9, P13) referred to explanations of Place as "the bubble thing" or

"map thing" instead of noting which question they wanted to ask. They used the simple bubble

components of Place (e.g., see Figure 7.3a) to investigate various questions (Figure 7.6). Therefore,

it may be better to design simple explanation components that can be used to answer multiple

questions than to individually answer those questions through different automatically generated

representations: i.e., use explanation components with a smaller vocabulary set expressive enough

to convey most of the explanation types we have employed. Unfortunately, it is difficult to design

7.10 DESIGN RECOMMENDATIONS FOR INTELLIGIBILITY 175

7
.1

0
 D

E
SIG

N
 R

eco
m

m
en

d
atio

n
s F

o
r In

telligib
ility

 1
7

5

reusable, simple explanation components for contexts like motion and sound, because they depend

on a wider and more diverse range of features that may not be represented equivalently.

What Place inferred as at place A.

Certainty Distance error and number of access points.

Inputs Latitude and Longitude coordinates of sensed current user location.

Outputs Place A, B, etc.

Why at A Because sensed location bubble overlaps with bubble of A.

Why Not at B Because sensed location bubble does not overlap with B.

How To be inferred at B Need location and B bubbles to overlap. Certainty of inference:

Figure 7.6. Simple "bubble" components simultaneously for explaining seven questions

about Place.

7.10.3 STREAMLINING QUESTIONING

Aware of her lack of understanding to effectively use the explanation questions, P7 suggested a flow

chart to help guide users to ask optimal questions. We propose the streamlined flow of questions as

shown in Figure 7.7, where only 1-3 question types are accessible at any given time. This helps

reduce information overload when choosing explanations. Users first start with seeing What the

application has inferred, along with its Certainty (1). If they want to ask questions, they can seek the

mechanistic rationale by asking Why (2a), explore the system Inputs state (2b), or explore the

Certainties of alternative Output values (2c). If users want to know why an expected or alternative

output was not inferred, they may ask Why Not (3a), compare Inputs with How To (3b). These

support the two observed why-not strategies. Having observed how participants wanted to ask

questions from the Laκsa UI, we recommend convenient shortcuts: users can ask Why Not on

seeing alternative Output values (4), and simulate different Input values to ask What If (5). Finally,

users can also explore the values (6a) and Outputs (6b) of lower-tier contexts through Inputs and

What If, respectively.

Place
A

(Lat, Lon)

Distance Error
+ Number of access points

Place
B

176 CHAPTER 7 | DESIGNING FOR INTELLIGIBILITY

7
.1

1
 L

IM
IT

A
T

IO
N

S an
d

 F
u

rth
er W

o
rk

 1
7

6

Figure 7.7. Streamlined sequence diagram for explanation use.

7.10.4 NON-MECHANISTIC EXPLANATIONS

We found that users need more types of explanations to properly ground them in the application

domain, and to educate them about good problem solving and debugging strategies to fully

understand the program functionality.

Given the deep knowledge that complex context-aware applications rely on to make decisions, and

the evidence that some participants lacked sufficient prior knowledge to relate technical behavior

to real-world and domain phenomena, we can see that simple textual descriptions are not sufficient

to scaffold the automatically generated explanations. This suggests context-aware applications

need to have access to information about complex real-world concepts that are not necessarily core

to the application.

Moreover, we found that since some users did not effectively leverage the explanation facilities

provided, intelligible applications may need to teach them problem solving strategies. One solution

may be to provide examples of end-user debugging with the explanation tools.

7.11 LIMITATIONS AND FURTHER WORK

We used an iterative design process where design decisions were based on careful consideration,

consultation with HCI experts, and user feedback. While we believe our designs are reasonably

interpretable, an alternative approach is to make comparisons between competing designs.

How
To

Why
Not

? CertaintyWhat

Inputs

What
If

Why

1

2a

2b

2c

4

3a 3b

5

CertaintiesOutputs

7.12 CONCLUSION 177

7
.1

2
 C

O
N

C
L

U
SIO

N
 1

7
7

We have limited our study to a manageable set of scenarios, chosen to aid exploration of

explanation use, rather than to comprehensively cover situations. Hence, our results are suggestive

rather than definitive, and we seek to validate them with further design iterations and user studies.

Our design recommendations are based on studying how and why users seek explanations given

several goal situations. While we expect that following them would improve the usability and thus

usage of explanations, they may not be the best to promote understanding. Future work will explore

how to design and provide explanations that are not only easier to interpret, but also effective in

improving the understanding of how context-aware applications work. In Chapter 9, we describe

follow-up work on the intelligible Laκsa prototype to explore the usage of intelligibility and how

that affects end-user understanding of Laκsa’s context inference.

7.12 CONCLUSION

We have described our first steps to building a real-world, intelligible mobile context-aware

application. We followed several design principles to improve the usability of explanations, and

conducted a user study to discover how users make use of explanations, and issues they

experienced. Particularly, we investigated the use of intelligibility for the mobile contexts of

Availability, Place, Motion, and Sound activity. Our findings emphasize the importance of making

explanations usable and quickly consumable (by reducing information overload), relating the

application behavior to the real world activity (to raise the relevance of the information), and

supporting effective problem solving and debugging strategies (so that users can quickly

understand the application issues before giving up). We suggest a need for streamlining

explanations while maintaining access to the rich explanation capabilities, and for integrating

domain knowledge in explanations. With a better understanding of how users use the question type

explanations, we can better design explanations to help understand sophisticated context-aware

applications.

179

8 EVALUATING INTELLIGIBILITY

UNDER UNCERTAINTY

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2011). Investigating Intelligibility for Uncertain Context-Aware

Applications. In Proceedings of the 13th international conference on Ubiquitous computing

(UbiComp '11). ACM, New York, NY, USA, 415-424.

ABSTRACT. Context-aware applications use sensing and inference to attempt to determine users'

contexts, and take appropriate action. However, they are prone to uncertainty, and this may

compromise the trust users have in them. Providing intelligibility has been proposed to help

explain to users how context-aware applications work in order to improve user impressions of

them. However, we hypothesize that intelligibility may actually be harmful for applications that are

very uncertain of their actions. We conducted a large controlled study of a location-aware and a

sound-aware application, investigating the impact of intelligibility on understanding, and user

impression of applications with varying certainty. We found that intelligibility impacts user

impressions, depending on the application's certainty and behavior appropriateness. Intelligibility

is helpful for applications with high certainty, but it is harmful if applications behave appropriately,

yet display low certainty.

8.1 INTRODUCTION

In previous chapters, we have found that some explanation types were more effective than others in

improving understanding and trust (Chapter 4), and later investigated more explanation types that

end-users of context-aware applications are interested in (Chapter 5). However, even though these

studies show great promise for the efficacy of intelligibility in context-aware applications, they have

180 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.2

 IN
T

E
L

L
IG

IB
IL

IT
Y A

n
d

 U
n

certain
ty

 1
8

0

assumed the use of systems that have reasonably high certainty in their actions, and that, while

fallible, generally take appropriate actions. Intelligibility would enhance the positive impression a

user may have of an application, and reveal how it intelligently tries to figure out what is happening

even for difficult sensing and inference situations. Unfortunately, because of these difficulties in

sensing and inference, applications can be uncertain of their actions, often resulting in users having

a negative impression of these applications. It is hoped that intelligibility would help bring up this

shortfall, and raise a user's impression of a context-aware application. However, is there a certainty

below which intelligibility would not help, but may actually harm a user's impression of the

application? If this were the case, the user could lose even more trust in the application's capability

and precision. So an application with sufficiently low certainty would not benefit from adding

intelligibility, and instead, the developer should focus on improving its certainty instead.

In this chapter, we present two scenario-driven lab studies where we investigate the interaction

between intelligibility and application uncertainty. For the first study, we manipulated the

provision of Intelligibility in three levels (None, Certainty-only, Full), and Certainty in six levels (50,

60, 70, 80, 90, 100%), in a between-subject design for an online survey. We designed two context-

aware applications (location-aware, and sound-aware) to explore the impact of certainty on

intelligibility for applications with differing complexity. In a follow-up study, we ran a think-aloud

study using a reduced form of the online survey, seeking to add greater context to our quantitative

findings. Our contributions are:

1. Understanding how users respond to intelligibility in context-aware applications under

different levels of certainty; and

2. Identifying when, how, and why intelligibility is helpful or harmful as a result of application

certainty.

8.2 INTELLIGIBILITY AND UNCERTAINTY

In this section, we provide background and related work on intelligibility, uncertainty in context-

aware applications, and the impact of showing uncertainty to end-users.

8.2.1 DISPLAYING UNCERTAINTY IN CONTEXT-AWARE APPLICATIONS

Context-aware applications are prone to uncertainty, and one common strategy for dealing with

this involves user mediation where the user resolves uncertainty [Dey et al., 2002]. Furthermore,

8.2 INTELLIGIBILITY AND UNCERTAINTY 181

8
.2

 IN
T

E
L

L
IG

IB
IL

IT
Y A

n
d

 U
n

certain
ty

 1
8

1

these applications should represent to their users what they know [Bellotti and Edwards, 2001],

not hide this ambiguity or uncertainty [Greenberg, 2001], and reveal the "seams" of their

underlying systems [Chalmers and MacColl, 2003]. Currently, some context-aware applications are

able to model uncertainty due to their underlying probabilistic models (e.g., [Kulesza et al., 2009;

Tullio et al., 2007]), but few display the system certainty (e.g., [Cheverst et al., 2005]).

Conversely, many studies have also explored various ways to display uncertainty, and the benefits

of doing so. Antifakos and colleagues showed that uncertainty improved task performance speed of

participants when certainty is high [2004], and that participants verified automatic settings made

by a context-aware system less often when its certainty was high or medium [2005]. Similarly,

Rukzio et al. [2006] found that displaying uncertainty slowed down user performance, because

users would double-check fields with lower certainty. In studies of presenting location information,

visualizations of location certainty were found to improve user performance with location-based

services [Dearman et al., 2007; Lemelson et al., 2008]. Though not explicitly investigating about

uncertainty, Yan et al. [2010] found that displaying higher trust and reputation values of mobile

applications increased users' willingness to continue using them.

Our work adds to the research on displaying uncertainty by carefully varying uncertainty to identify

a certainty threshold below which displaying uncertainty becomes harmful instead of helpful, in

two different contexts — location and sound. Furthermore, we extend the displaying of uncertainty

to include other explanations that provide users with a fuller form of intelligibility.

8.2.2 INTELLIGIBILITY IN CONTEXT-AWARE APPLICATIONS

For this work, we use the definition of intelligibility defined Chapter 5, which classifies explanations

in terms of questions that users may ask of context-aware applications. Specifically, we developed

interfaces for explanations of the following questions:

1. What is the current value of the context?

2. Certainty: how certain is the application of this value?

3. Why is this context the current value?

4. Why Not: why isn’t this context value Y, instead?

5. Inputs: what factors affect this context?

We describe how to provide explanations for these questions later in Section 8.5 (Application

Platforms).

182 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.3

 H
Y

P
O

T
H

E
SE

S 1
8

2

8.3 HYPOTHESES

While we do not assert it here, we believe the user's impression of an application impacts her trust

of it. We define that a user has a good impression of a context-aware application when she perceives

it to be highly certain of its inference, feels that it generally behaves appropriately, and she

agrees with what it is doing. As illustrated in Figure 8.1, we hypothesize that:

H1a: Above a certainty threshold, intelligibility improves a user's impression of a context-aware

application.

H1b: Below the threshold, intelligibility harms the user's impression of the application. This could

be due to the user realizing how poorly the application is performing.

Figure 8.1. Hypothesis 1: Intelligibility will improve user impressions when an application is

certain of its actions, but it will harm impressions when it is uncertain. Only interaction

effect suggested, not linearity of trends.

We hypothesize that this effect on impression is due to the increased understanding provided by

intelligibility:

H2: Providing intelligibility helps increase a user's understanding of the application.

While H2 has been shown to be true in Chapter 4 [Lim and Dey 2009], we seek to verify those

results, as H1 depends on this. Thus, H2 in combination with H1b hypothesizes that a gain of

understanding about a low certainty application leads to a loss in impression. Next, we describe a

large-scale, between-subjects lab study to test these hypotheses.

Low High

Im
p

re
ss

io
n

Certainty

Non-Intelligible

Intelligible

8.4 METHOD 183

8
.4

 M
E

T
H

O
D

 1
8

3

8.4 METHOD

We are primarily interested in the interaction between the provision of intelligibility, the certainty

of the application, and the impact on understanding and impression. We chose to investigate this

effect using a large-scale, controlled lab study. The study was deployed online through Amazon

Mechanical Turk (MTurk) to allow us to collect input from a large number of participants and span

many levels of certainty and intelligibility. For generality, we designed two context-aware

applications and varied their certainty, and intelligibility levels. We exposed participants to several

canonical situations of these applications through 10 different scenarios.

8.4.1 EXPERIMENTAL CONDITIONS

We varied Intelligibility and application Certainty as independent variables in a between-subject

experiment, across two applications, for a total of 3×6×2=36 conditions.

8.4.1.1 INTELLIGIBILITY (3 CONDITIONS: NONE, CERTAINTY-ONLY, FULL)

We varied whether participants were provided with explanations where they only saw the

application inference (None), or additionally saw a rich explanation visualization (Full). We

included an intermediate intelligibility level, where we provided just Certainty percentage only, to

investigate how much value the explanation visualizations add over just showing certainty.

8.4.1.2 CERTAINTY (6 CONDITIONS: 50%, 60%, 70%, 80%, 90%, 100%)

We varied certainty as six intervals (rather than a dichotomy) to be able to observe any trends that

may arise.

8.4.2 MEASURES

We are interested in measuring how much participants understand the application for each

intelligibility condition, and whether this affects their perception of certainty, feeling of whether the

application behaved appropriately, and how much they agree with the application's inference.

Understanding. For each scenario, we asked participants why the application inferred what it did,

and why not something else (free-text). We asked these questions for all scenarios to prime

participants to think about the underlying inference of the application. We analyzed the responses

from the sixth of 10 scenarios presented, as we expected participants to be sufficiently familiarized

184 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.5

 A
P

P
L

IC
A

T
IO

N
 P

latfo
rm

s 1
8

4

with the application through previous scenarios, but not overly tired of providing feedback. We

validated that this was true through a sampling of the responses.

Perceived Certainty. For each scenario, we asked participants how certain they believed the

application was in its inference (as numerical input 0 to 100%). After the scenarios, we asked for

their overall sense of the certainty.

Perceived Appropriateness. For each scenario, we measured what the participant felt about the

appropriateness of the application behavior, on a 7-point Likert scale from Very Inappropriate to

Very Appropriate.

Agreement. For each scenario, we measured how much the participant agreed with the

application’s inference, given the ease or difficulty of making the inference; on a 7-point Likert scale

from Strongly Disagree to Strongly Agree.

8.5 APPLICATION PLATFORMS

To investigate the interaction between intelligibility and uncertainty, we designed two applications

— LocateMe and HearMe — and varied their certainty and intelligibility levels. Derived from design

explorations of intelligibility in Chapter 7 [Lim and Dey, 2011a], both applications are mobile phone

applications, but deal with different contexts (location, and sound activity, respectively), different

inference mechanisms, and different explanation interfaces. While real, physical prototypes were

not used in this study, these applications have been prototyped, and their described functionality

are feasible and indicative of real applications and their associated uncertainty. We describe these

applications, how they sense and make inferences, their basis for uncertainty, and how they

visualize their inferences.

Each application has three different levels of intelligibility. The None version would just show the

output of the application (e.g., "You are at the Washroom", "You were in a Conversation"). The

Certainty version adds a certainty percentage (e.g., 89%, 62%). The Full version adds an

explanation visualization (see Table 8.1 and Figure 8.4).

8.5.1 LOCATEME

LocateMe is a location-aware mobile phone application that uses GPS, Wi-Fi and cellular networks

to triangulate where the user is, and match that to a predetermined set of locations to infer which

8.6 SCENARIOS 185

8
.6

 S
C

E
N

A
R

IO
S 1

8
5

place the user is at. It then uses this inference to take actions such as sending a reminder, or

identifying the nearest printer. In the scenarios, LocateMe is used for indoor and outdoor situations.

Basis for uncertainty. Due to the probabilistic model of the user's location (as a Gaussian area),

LocateMe infers the user being at places with varying levels of certainty. Its certainty depends on

how much the user's estimated area "overlaps" with the area of the named place, and is computed

into a probability. The larger the area of the named place, and/or the closer the user's area is to that

place, the higher the certainty. Uncertainty is also affected by sensing errors due to GPS signal

occlusion (e.g., being indoors), Wi-Fi or Cell network signal strength, etc.

8.5.2 HEARME

HearMe is a sound-aware mobile phone application that uses the phone's microphone to sense and

infer one of three activities: whether the user is (i) in a conversation, (ii) listening to music, or there

is mostly (iii) ambient noise. It uses several features extracted from processing the microphone

signal, such as: frequency bandwidth, spectral entropy, low-energy frame rate, Mel-Frequency

Ceptral Coefficients (see Section 7.2 for more details about features used). HearMe uses a trained

naïve Bayes model to infer whether the sound heard was one of the three activities.

Basis for uncertainty. HearMe models uncertainty of its inference from the probabilistic

uncertainty of the naïve Bayes model. This depends on the sound samples used to train the original

model. HearMe does not model the error due to the microphone signal for uncertainty.

Due to the ubiquity of GPS devices and location sensing in smart phones, LocateMe is likely more

familiar to users than HearMe which uses machine learning inferences that are less common-place

in devices available to consumers.

8.6 SCENARIOS

Similar to [Antifakos et al., 2004; Lim and Dey, 2009], we use scenarios to let participants learn

about and experience our applications. However, rather than present 5-second video clips to help

participants experience a scenario, we provided users with a precise representation to understand

the ground truth of each scenario. For LocateMe, we showed a map or floorplan indicating where

the participant would actually be in the scenario. For HearMe, we played an audio clip of what the

participant and her phone would supposedly have heard.

186 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.6

 S
C

E
N

A
R

IO
S 1

8
6

 LocateMe HearMe

Situation
description

and

Ground
truth

(a) You are in the washroom taking care of
some business, just before your meeting

with your neighboring coworker, Damien.

Star denotes where you actually are at;
purple triangle denotes Damien’s office

(RM102).

(d) At the coffee shop, you find Michelle, a
coworker, there, and have a chat with her.

Participant listens to an auto-started audio
clip of ambient noise in a coffee shop, with a

female voice occasionally talking.

H6-groundtruth.mp3

Application
behavior

Certainty
90%

(b) You receive a text message from Damien,
who tells you he is waiting for you at his

office. You check LocateMe:

(e) You are not interrupted for 12 min, and
when the conversation ends, you receive a

notification message from HearMe:

You see that Cameron had tried to call you,
but HearMe suppressed his call since it

interpreted you as uninterruptible.

Certainty
60%

Wrong
inference, in
this case

(c) Damien calls to ask where you are since
LocateMe said you are in his office, which is

obviously false. You check LocateMe:

(f) You are not interrupted for 12 min, and
when the conversation ends, you receive a

notification message from HearMe:

You are at the
Washroom

89%
Certainty

You were In a Conversation
Cameron tried to call you 7 min ago

89%

You were In a Conversation
Cameron tried to call you 7 min ago

89%

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

5

9

12

-2

16

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1240Hz

.53bits

1.4W/Hz

11%

Certainty Certainty

You are at Damien’s
Office (RM102)

62%
Certainty

Hearing Ambient Noise
Allowing call from Cameron

62%

Hearing Ambient Noise
Allowing call from Cameron

62%

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

-3

6

-7

17

-3

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

Certainty Certainty

8.6 SCENARIOS 187

8
.6

 S
C

E
N

A
R

IO
S 1

8
7

 LocateMe HearMe

Explanation
UI
Description

LocateMe uses "bubbles", to determine and
show where the user is, rather than showing
pin-point positions. The user's sensed
location is represented by two blue
concentric circles, and a Gaussian blue area.
He is most likely to be in the center of the
area, but less likely the further away from it.
The bounds indicate thresholds of certainty
(50, 90%) that the user is within the bounds.
Places are represented with uniform
circular areas of varying size. E.g.,
Washroom is defined with a circle, with the
center where the room is, and the size is
how large the room is.

The user is inferred to be at a place if his
blue bubble "overlaps" with the place's
bubble. A green bubble indicates the place
where the user is inferred to be; a red
bubble indicates where he is not inferred to
be. (b) shows a green bubble over the
washroom overlapping with the user's blue
bubble to explain why he is inferred to be
there. The large overlap suggests a high
certainty (in this case, 89%). (c) explains
why the user is not inferred to be at the
washroom but at Damien's office instead, by
showing: a red bubble for the washroom, a
green bubble for Damien's Office. The blue
bubble overlaps with the green bubble more
than with the red bubble, indicating 62%
certainty.

HearMe uses two types of visualizations to
explain what it senses, and how it infers an
activity, with a Sensed State and Evidence
visualization, respectively. We substitute the
technical names of the input factors with
metaphorical terms (e.g., Periods of Silence
for low-energy frame rate, Pitch Purity for
spectral entropy), and aggregate the
remaining factors as Other Factors. We
explain the meanings of each factor and
implications of their values, e.g.: Periods of
Silence indicates what percentage of the
sound sample was relatively silent compared
to the rest of it; talking would have higher
percentage. The Sensed Factors viz (right
diagram) shows the values of the factors, and
a gauge icon indicating whether each value is
at, below, or above the average values for that
factor.

The Evidence visualization (left diagram)
shows a bar chart indicating if each factor
votes for (blue towards right) or against (red
towards left) the inference, and by how much.
This viz can be used to compare one output
against all others (e), or specifically contrast
between two outcomes (f). The balance of the
bars indicate how certain the application is
about its inference. If it is more certain, the
bars are weighted more towards the right,
and if less certain, the bars are equally
weighted to the right and left.

Table 8.1. Scenario scripts, application interfaces showing Full intelligibility, and their

interpretation of Scenario 6.

We presented 10 scenarios as a chronological sequence of events happening through a single day.

As in Section 7.6.2 [Lim and Dey, 2011a], the scenarios were written to span five themes typical of

what context-aware applications are used for: interruption management, social awareness,

reminders, recommender, exploration / learning. Each theme is repeated twice (not consecutively)

to provide repeated exposure. Collectively, the scenarios are representative of the application

certainty (e.g., for 60%, the application behaved appropriately for 6 out of 10 scenarios). Hence,

participants in the None intelligibility condition could perceive the certainty of the application. The

certainties presented (for Certainty and Full intelligibility) also reflected the certainty condition,

188 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.7

 P
R

O
C

E
D

U
R

E
 1

8
8

but with small randomized differences (e.g., 60, 63, 59, 60, 58, 62, 61, 57, 60, 60%), to prevent

participants from ignoring the values had they been constantly shown 60% repeatedly.

Table 8.1 shows the scripts and diagrams shown to participants in the LocateMe (left), and HearMe

(right) surveys for a scenario, Table 8.2 describes how different explanation types are provided in

both applications. S6. Next, we describe what participants were asked to do for each application

survey.

 Description / Function LocateMe HearMe

What Show the current inference of
the context and consequent
action.

Reports inferred place, and
shows blue bubble of the user
in map visualization.

Reports inferred sound
activity.

Certainty Show the certainty of the
application's inference of the
current context value.

Shows a certainty percentage,
and

size of bubbles in map
visualization (larger sizes
show lower certainty).

Shows a certainty percentage,
and sense of balance of bars
in evidence visualization.

(more balance show lower
certainty).

Why Show a model-based
explanation of how the
application inferred the
current context value.

Shows the overlap between
the inferred place (as a green
bubble) and the user's blue
bubble.

Shows weights of evidence for
the inference due to each
input factor in a bar chart
visualization.

Why Not Show a model-based
explanation distinguishing
how the application did not
infer the alternative inference.

In addition to the Why
visualization, shows the lack
of overlap between the place
(as a red bubble) and blue
bubble.

Shows the evidence
visualization, contrasting the
current inference against the
alternative inference.

Inputs Show the current values of
input context / features.

Visually shows the user's
position by positioning the
blue bubble in a map.

Lists current input factor
values, and provides a gauge
of its relative value.

Table 8.2. Explanation types. LocateMe uses a map and bubbles visualization for its

explanations about its location inference. HearMe uses lists the current values of its sensed

factors, and their corresponding evidence to explain its sound activity inference.

8.7 PROCEDURE

After consenting to participate in the survey (either LocateMe or HearMe), the participant was

randomly assigned to a Certainty condition and an Intelligibility condition. He read instructions on

how the application works, and how to interpret its display. As recommended by [Kittur et al.,

2008], we then asked two verification questions (multiple-choice) to ensure comprehension. The

participant next went through 10 scenarios to experience the application under various situations.

8.8 PARTICIPANTS AND DATA CLEANSING 189

8
.8

 P
A

R
T

IC
IP

A
N

T
S an

d
 D

ata C
lean

sin
g

 1
8

9

For each scenario, he read (i) a scenario description, and (ii) the subsequent response of the

application which may or may not be appropriate for the situation. He was then (iii) asked

verification questions to ensure he had carefully read and understood the scenario. Next we asked

questions for our measures of (iv) perception of certainty, (v) application behavior

appropriateness, and (vi) agreement. Finally, he was asked about his (vii) understanding of the

application inference. After the scenarios, the user was tested on his (viii) overall understanding of

the application and (ix) overall perceived certainty. Finally, he was asked about his background

with using smart phones, and for demographic information.

8.8 PARTICIPANTS AND DATA CLEANSING

We recruited participants from Amazon Mechanical Turk. There were 584 completed HITs (human

intelligence tasks), and 397 incomplete HITs. We rejected 76 HITs because each participant had low

verification score, rushed through the survey too quickly, and/or was unconscientious (gave

reasons that were gibberish, repetitive, or irrelevant). Of the remaining 508 participants, their

survey completion time was Median=33 minutes (8.9 to 109), and their verification score was

Median=20 (7 to 22) out of 22. Some participants had low verification scores, which indicates poor

understanding of the scenarios and application, but their free-text reasons indicated conscientious

effort in the survey. So they were included in our population sample to represent users who have

greater comprehension difficulty. We had participants across 36 conditions (3 Intelligibility × 6

Certainty × 2 Application) in our experiment (M=14.1, 11 to 17 in each condition). We paid each

participant $2.

8.9 DATA ANALYSIS AND RESULTS

In this section, we present the analysis we performed on the survey results, related to our

hypotheses. Before we investigate whether intelligibility influences users' impressions of a context-

aware application, first we analyze whether intelligibility improves understanding of how the

application works (H2). We assume that understanding is not influenced by the certainty of the

application.

190 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.9

 D
A

T
A

 A
n

aly
sis an

d
 R

esu
lts

 1
9

0

8.9.1 UNDERSTANDING OF APPLICATION INFERENCE

Figure 8.2. Mean of number of correct and wrong reasons counted from participant free-text

responses of how the application made its inference in S6. Participants with Full

intelligibility gave more correct reasons when explaining about HearMe than those with

None (p<.01); this was only marginal for participants explaining LocateMe (p=.08).

Furthermore, participants explaining LocateMe offered more wrong reasons than those

explaining HearMe (p<.01), particularly when provided with some form of intelligibility

(p<.01).

Figure 8.3. Mean number of correct Input factors in the top three choices of the Inputs

ranking task (Left), and number of fallacious factors given in all 10 choices (Right).

Participants with Full intelligibility chose more correct factors of HearMe as top three than

those with None (p=.014); this was not noticeable for LocateMe (p=n.s.). Moreover,

participants explaining HearMe chose fewer fallacious factors than those explaining

LocateMe, particularly when provided with Full intelligibility (p<.01).

As a measure of understanding, we coded the free-text responses about how they thought the

application made its inferences for S6. We counted how many of the reasons about the application

0.0

0.5

1.0

1.5

2.0

None Certainty Full

#
 C

o
rr

e
ct

 R
e

a
so

n
s

0.0

0.5

1.0

1.5

2.0

None Certainty Full

#
 W

ro
n

g
 R

e
a

so
n

s LocateMe

HearMe

0

1

2

3

None Certainty Full

#
 C

o
rr

e
ct

 F
a

ct
o

rs
 i

n

T
o

p
 3

 I
n

p
u

t
C

h
o

ic
e

s

0

1

2

3

None Certainty Full

#
 F

a
ll

a
ci

o
u

s
fa

ct
o

rs

LocateMe

HearMe

8.9 DATA ANALYSIS AND RESULTS 191

8
.9

 D
A

T
A

 A
n

aly
sis an

d
 R

esu
lts

 1
9

1

that they provided were correct. A reason is considered correct if it relates to an actual factor that

the application uses (e.g., GPS, latitude, distance threshold, bubbles; Periods of Silence, Pitch Purity,

noisiness). We eliminated repeated and redundant reasons (i.e., paraphrasing of the same idea),

and accepted language that demonstrated an approximate idea of valid concepts.

We fit a mixed model with: correct reason count as the dependent variable, intelligibility and

application as independent variables, interaction × application as an interaction effect, certainty as

a control variable, and participant as a random variable (nested in intelligibility, application, and

certainty). We found that participants with Full intelligibility gave more correct reasons than those

with None, especially regarding HearMe (see Figure 8.2 and Figure 8.3).

Next, we analyze whether and how this increase in understanding influences how participants

perceived the certainty of the application. We annotate some figures to indicate notable findings in

our results (e.g., Cl, C¬a,l, Aa).

8.9.2 PERCEIVED OVERALL CERTAINTY

We asked each participant about their perception of the overall (average) certainty of the

application, after completing all 10 scenarios. To examine differences in this perception for each

application separately, we fit a mixed model with: perceived overall certainty as dependent

variable, intelligibility and certainty as independent variables, intelligibility × certainty as an

interaction effect, and participant as a random variable (nested in intelligibility and certainty). We

also combined data from both applications, and fit a similar mixed model but also with application

as a control variable. These results are presented in Figure 8.4 and Table 8.3.

Our results show that, for high actual certainty, participants with intelligibility perceived a higher

certainty than those without (Ch); for low actual certainty, participants with intelligibility perceived

a lower certainty than those without (Cl). Alternatively, an interpretation may be participants with

intelligibility just copied the certainty displayed. Means testing suggests that this could be so (see

Table 8.4), but we further investigate this in a follow-up study (see later).

192 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.9

 D
A

T
A

 A
n

aly
sis an

d
 R

esu
lts

 1
9

2

Both Applications (Combined) LocateMe HearMe

F(10,489)=4.02, p<.001 F(10,489)=3.77, p<.001 F(10,489)=1.97, p<.05

Figure 8.4. Perception of Overall Certainty: combined analysis (Left), and for individual

applications (Middle and Right). Participants with Full intelligibility perceived a higher

certainty when the application had high actual certainty, but perceived a lower certainty

when it had low actual certainty.

Application Combined LocateMe HearMe

Actual Certainty
Low

50-70%

High

90-100%

Low

50-60%

High

100%

Low

50-70%

High

80-100%

None vs. Full p<.001 p<.05 p<.001 p<.05 p<.01 p=n.s.

None vs. Certainty p<.001 p=n.s. p<.001 p<.05 p<.01 p=n.s.

Table 8.3. Pre-hoc contrast between Intelligibility types for low and high actual certainty.

These groups were chosen after visually inspecting the interaction graphs.

Certainty (%) 50 60 70 80 90 100

Certainty <.01 n.s. n.s. n.s. .05 .01

Full .02 n.s. <.01 n.s. n.s. <.01

Table 8.4. Means testing of whether perceptions of overall certainty are different from actual

certainties. t-test p-values suggest copying if p=n.s.

0

10

20

30

40

50

60

70

80

90

100

50 60 70 80 90 100

P
e

rc
e

iv
e

d
 C

e
rt

a
in

ty
 (

%
)

None

Certainty

Full

Cl

Ch

Actual Certainty (%)

50 100 50 100

8.9 DATA ANALYSIS AND RESULTS 193

8
.9

 D
A

T
A

 A
n

aly
sis an

d
 R

esu
lts

 1
9

3

While our results show that participants' perceived overall certainty across different certainty

levels is influenced by intelligibility, we next show that their perception also varies based on how

the application behaved per scenario.

8.9.3 PERCEIVED CERTAINTY BY APPLICATION APPROPRIATENESS

To investigate perception of certainty across scenarios, we analyzed the repeated measure of how

certain participants felt the application was for each scenario. Figure 8.5 (Right) shows the

fluctuation of perceived certainty as participants with no intelligibility (None) go through the

scenarios, depending on whether the application behaved appropriately in the scenario. When

participants received Full intelligibility (Figure 8.5, Left), their perceived certainty was more

stratified, and less fluctuating.

We group our results by application appropriateness, and fit two mixed models with: perceived

certainty as dependent variable, intelligibility and certainty as independent variables, intelligibility

× certainty as an interaction effect, and participant as a random variable (nested in intelligibility

and certainty). Our results (see Figure 8.6 and Figure 8.7) show that, for appropriate application

behaviors, participants with intelligibility perceived lower certainty than those with None when

encountering actual low certainty (Ca,l), and conversely perceived higher certainty when

encountering actual high certainty (Ca,h). For inappropriate application behaviors, there was no

difference in perception for actual low certainty (C¬a,l), but participants with intelligibility perceived

higher certainty for actual high certainty, than participants without (C¬a,h).

194 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.9

 D
A

T
A

 A
n

aly
sis an

d
 R

esu
lts

 1
9

4

Full Intelligibility None

Figure 8.5. Perceived certainty influenced by application appropriateness across scenarios.

The application behaved appropriately for at least one Certainty condition in S1, S4, S6, S8,

and S10, more so for lower certainty conditions.

Application Appropriate Application Inappropriate

F(10,483)=10.6, p<.001 F(10,431)=2.68, p<.01

Figure 8.6. Perceived certainty across actual certainty by application appropriateness. Note:

no inappropriate scenarios for 100% certainty condition.

0

10

20

30

40

50

60

70

80

90

100

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

P
e

rc
e

iv
e

d
 C

e
rt

a
in

ty
 (

%
)

Scenario

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

100% 90%

80% 70%

60% 50%

0

10

20

30

40

50

60

70

80

90

100

50 60 70 80 90 100

P
e

rc
e

iv
e

d
 C

e
rt

a
in

ty
 (

%
)

Actual Certainty (%)

Ca,l

Ca,h

50 60 70 80 90

None

Certainty

Full

 C¬a,h C¬a,l

8.9 DATA ANALYSIS AND RESULTS 195

8
.9

 D
A

T
A

 A
n

aly
sis an

d
 R

esu
lts

 1
9

5

App Behavior Appropriate Inappropriate

Actual Certainty 50-70% 80-90% 50-70% 80-90%

None vs. Full p<.001 p<.05 p=n.s. p<.001

None vs. Certainty p<.001 p=n.s. p=n.s. p<.001

Table 8.5. Contrast between Intelligibility types for low and high actual certainty grouped by

application behavior.

8.9.4 AGREEMENT BY PERCEIVED APPROPRIATENESS

Given the difference in perception due to application appropriateness, we are interested to see if

participants' opinion of how appropriately the application behaved, and how much they agree with

its inference were affected by intelligibility. These self-reported, repeated measures for every

scenario were obtained with the following questions:

Perceived Appropriateness with "How appropriately or inappropriately did the application

behave in this situation?" (7-point Likert scale)

Agreement with "How much do you agree or disagree with the application's inference, given how

easy or difficult it is to infer this?" (7-point Likert scale)

We did not compare perceived certainty, because, as expected, it varied independently of

appropriateness.

We fit a mixed model with: agreement as dependent variable, appropriateness and agreement as

independent variables, appropriateness × agreement as an interaction effect, and participant as a

random variable (nested in appropriateness and agreement). Our results (see Figure 8.7 and Table

8.6) show that participants tended to agree with the application when they perceived it behaved

appropriately, and vice versa. When participants felt the application behaved inappropriately (<0),

those with intelligibility agreed with the application more than those with None (A¬a). However,

when participants perceived the application behaved very appropriately (2-3), participants using

an application with low certainty and intelligibility agreed less with it than those with None (Figure

8.7, Right; Aa).

196 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.9

 D
A

T
A

 A
n

aly
sis an

d
 R

esu
lts

 1
9

6

All Actual Certainties

(50-100%)

Low Actual Certainty

(50-70%)

F(12,4984)=2.92, p<.001 F(12, 1645)=3.31, p<.001

Figure 8.7. Agreement across Perceived Appropriateness, grouped by actual certainty. The

effect of finding 4h is only significant for low actual certainty.

Actual Certainty All (50-100%) Low (50-70%)

Appropriateness Not (<0) High (2-3) Not (<0) High (2-3)

None vs. Full p<.01 p<.05 p<.01 p<.01

None vs. Certainty p=.052 p=n.s. p=n.s. p<.05

Table 8.6. Contrast between Intelligibility types for low and high appropriateness grouped

by actual certainty.

8.9.5 SUMMARY OF FINDINGS

We summarize our findings in terms of our hypotheses. Participants with Full intelligibility gave

more correct reasons of how the application works, than those without (satisfies H2). Finding Ch

satisfies H1a that intelligibility improves user impression of a context-aware application if its

certainty is high. This is more pronounced when the application behaved inappropriately (C¬a,h)

than appropriately (Ca,h). Conversely, finding Cl satisfies H1b that intelligibility harms user

impression if its certainty is low; particularly, when the application behaved appropriately (Ca,l, Aa).

However, participants with intelligibility disagreed less with the application inference when they

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

A
g

re
e

m
e

n
t

Perceived Appropriateness

A¬a

-3 -2 -1 0 1 2 3

None

Certainty

Full

Aa

8.10 FOLLOW-UP: THINK-ALOUD STUDY 197

8
.1

0
 F

O
L

L
O

W
-U

P: T
h

in
k

-A
lo

u
d

 Stu
d

y
 1

9
7

felt that it behaved inappropriately (A¬a). To gain better insights into our results, we ran a follow-up

study where we engaged participants face-to-face.

8.10 FOLLOW-UP: THINK-ALOUD STUDY

At this point, our results positively support our hypotheses that intelligibility exaggerates the

perception of certainty compared to not receiving any explanation. However, this could be because

our participants with intelligibility could just be copying the certainty value they were shown (see

Table 8.4). Do participants mindlessly copy these values, or do they weigh their opinion with

previous experiences with the application (from previous scenarios)? Furthermore, finding Al

suggests that Full intelligibility provides some additional benefit of improving the perception of

certainty than showing Certainty-only. How does Full intelligibility help to reinforce the Certainty

information provided?

8.10.1 METHOD AND PROCEDURE

Answering these questions will help us examine the link between the information provided through

Certainty-only and Full intelligibility, the user's understanding, and their subsequent impression of

the application. It will also help us explore whether and how Full intelligibility influences the user

compared to Certainty-only. To explore this, we ran a follow-up think-aloud study where we

presented all three intelligibility conditions within-subject, focusing on a subset of Certainty

conditions (low: 50%; high 90%). We continued to use both applications (between-subject) due to

their differences in complexity, and participant reliance on their explanations. Hence, we have four

conditions. Due to the time-consuming nature of the think-aloud study (one-hour long), we

presented only two scenarios (S6, S9) to our participants, counter-balanced for application

correctness. S6 has been described in Table 8.1. For S9, LocateMe correctly infers the user in

Meeting Room B and automatically loads the meeting agenda; HearMe correctly infers conversation

during a group meeting, and allows the user to retrieve the audio and save it. In the follow-up study,

the application always behaves incorrectly for S6, but correctly for S9, regardless of certainty.

We recruited two participants per condition (total 8), 4 females, mean age 28.1 years old (21 to 58).

We presented three iterations of the survey starting with None, Certainty, then Full, so as to avoid a

training effect. Each scenario has the same format and questions as the original survey.

Additionally, we asked them to think-aloud and provide reasons for their answers. This way, we

198 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.1

1
 D

ISC
U

SS
IO

N
 1

9
8

learned about how they thought the application made its inferences, and how they constructed

opinions of the application's behavior. We used paper surveys, so participants could refer to

previous surveys, compare previous phone displays, their previous answers, and discuss why they

changed or did not change their opinions. Table 8.7 shows which conditions participants P1 to P8

were in. We discuss our findings in the next section in the context of our original quantitative

results.

Certainty

Low

(S6:52%, S9:49%)

High

(S6:89%, S9:92%)

Application LocateMe HearMe LocateMe HearMe

Participant 1 5 2 8 3 5 4 7

Table 8.7. Distribution of participants in think-aloud study. Each participant saw S6

(appropriate behavior) and S9 (inappropriate), iterated within-subjects with intelligibility

types in the order: None, Certainty, Full.

8.11 DISCUSSION

We discuss the results from both experiments in terms of how intelligibility affects understanding

(H2), and how it affects users' impression of context-aware applications (H1).

8.11.1 H2: INTELLIGIBILITY INCREASES UNDERSTANDING OF CONTEXT-AWARE

APPLICATIONS

As expected, Full intelligibility allowed participants to better express an understanding of the

applications. This was particularly significant for HearMe, because the explanations listed relevant

factors, increasing the participants’ vocabulary to describe how the application works. In the think-

aloud study, participants could analyze and interpret the values of HearMe's sensed factors, and

their corresponding weights of evidence, and LocateMe’s bubble visualization. However, because

the input factors were not explicitly stated in LocateMe as they were for HearMe, participants gave

reasons for how LocateMe works by describing names of technologies, e.g., GPS, “position-specific

sensing” (P3), a “grid in the building” (P6), or in terms of the situation, e.g., signal blocked by nearby

stairs (P5), or improved signal because of proximity to windows (P5). Full intelligibility only

marginally increased the correct ideas that participants had about how LocateMe works. For

HearMe, without Full intelligibility, participants considered the “noisiness” of the audio, along with

8.11 DISCUSSION 199

8
.1

1
 D

ISC
U

SS
IO

N
 1

9
9

speaker identification (especially that of the user) as the most important factors for inference, but

with Full intelligibility, they tended to discard their original understanding and described the

inference in terms of the factors shown. We can interpret the differences between the applications

as due to their complexity and the users’ familiarity with them. These findings reinforce those in

Section 4.7.1 [Lim, Dey, and Avrahami, 2009] that prior knowledge about an application domain (in

this case, LBS) reduces the impact of intelligibility on understanding.

By providing more information, intelligibility also helps provide participants with an increased

awareness of what the application was inferring, and what it understood. This consequently

impacted their impression of it.

8.11.2 H1:IMPACT OF INTELLIGIBILITY ON USER IMPRESSIONS

Without Intelligibility, MTurk participants are influenced by whether the application behaved

appropriately to perceive its certainty (see Figure 8.5, Right). They perceived a modestly high

certainty (~85%) when it is behaved appropriately, and how often it behaved appropriately (Figure

8.4), but perceived a low certainty otherwise (~60%). Their overall perceived certainty is also

impacted by the cumulative application behavior, gently increasing from ~70 to ~90% as actual

certainty increases from 50 to 100% (Figure 8.5). With intelligibility, participants' perceived

certainty aligned more closely with the actual certainty.

However, do participants just copy the application certainty (as suggested in Table 8.4)? In the

think-aloud study, though influenced by the displayed value, all participants did not outright adhere

to it. They continued to be influenced by their perception of how difficult it was to make the

inference, and whether the application behaved appropriately, but adjusted their certainty rating

depending on the presented value. Hence, if a low certainty was presented, participants lowered

their certainty estimate, and while if a high certainty was displayed, participants raised their

certainty estimate, but not all the way to the presented value for both cases. Furthermore,

participants reevaluated their certainty rating when given Full intelligibility. Next, we discuss and

interpret our results (shown in Figure 8.6 and Figure 8.7) in terms of hypotheses H1a and H1b. We

found a caveat to H1b which we denote as H1b'. Table 8.8 summarizes these positive and negative

impacts that intelligibility has on user impressions.

200 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.1

1
 D

ISC
U

SS
IO

N
 2

0
0

 Certainty

 Low High

O
v

e
ra

ll

Harmful (H1b)

Decreases perceived overall
accuracy (finding Cl).

Helpful (H1a)

Increases perceived overall
accuracy (finding Ch).

B
e

h
a

v
io

r
A

p
p

ro
p

ri
a

te
n

e
ss

A
p

p
ro

p
ri

a
te

Harmful (H1b)

Decreases perceived accuracy
(finding Ca,l), and

Decreases agreement with
inference (finding Aa).

Helpful (H1a)

Increases perceived accuracy
(finding Ca,h).

N
o

t

Helpful (H1b')

Increases agreement with
inference (finding A¬a).

Helpful (H1a)

Increases perceived accuracy
(finding C¬a,h).

Table 8.8. Impact of Intelligibility on user impressions of a context-aware application

depends on application certainty and whether it behaved appropriately.

8.11.2.1 H1A: INTELLIGIBILITY INCREASES USER IMPRESSIONS OF CONTEXT-AWARE

APPLICATIONS WITH HIGH CERTAINTY

For context-aware applications with high certainty, our results verify previous findings of

Chapters 4 [Lim, Dey, Avrahami, 2009] and 5 [Lim and Dey, 2009] that intelligibility improves

users' impression of the applications (finding Ch). With intelligibility, participants perceived a

higher certainty from the application, particularly when it behaved appropriately (finding Ca,h).

After seeing the Certainty-only intelligibility, P4 raised her original rating (85% with None) to "just

below" what was shown (92%), despite feeling that HearMe was “overconfident,” because of her

“overall understanding” of the conversation that she heard in the audio clip. With Full intelligibility,

participants felt the explanations “reinforced” the high certainty (P3), or even raised their certainty

of the application (P6).

Intelligibility had a more significant impact on perceived certainty if the application behaved

inappropriately, since MTurk participants had a lower baseline certainty rating (about 60%

instead of ~85%). Though not to as high a level for appropriate application behavior, intelligibility

raised their confidence rating by a larger margin (by 15% to ~75%; finding C¬a,h). With Certainty-

only intelligibility, P3 liked that LocateMe was "honest," and trusted it more. P4 felt that HearMe

"would know its own certainty better than [she] would" and raised her certainty to 75-85%, which

was between what she had imagined and what was presented. P6 insisted that LocateMe's certainty

8.11 DISCUSSION 201

8
.1

1
 D

ISC
U

SS
IO

N
 2

0
1

should not have been so high, but raised her rating by 5%. With Full intelligibility, participants

reevaluated their opinion. P4 and P7 were more accepting of HearMe’s certainty, and raised their

ratings.

8.11.2.2 H1B: INTELLIGIBILITY DECREASES IMPRESSIONS OF APPLICATIONS WITH LOW

CERTAINTY WHEN THEY BEHAVE APPROPRIATELY

For context-aware applications with low certainty, intelligibility revealed how uncertain they

were, and compromised the impressions participants had of them (finding Cl). This was particularly

notable when the application behaved appropriately (finding Ca,l). In the think-aloud study,

participants were surprised to discover the low certainty. For LocateMe, P5 thought that the

location in S9 was easier to infer than in S6, and felt that the certainty should have been higher

(60%) than the presented 49%. For HearMe, P2 felt that the conversation in S9 was “so clear” that

the certainty should be higher at 60-65%. Furthermore, the unexpectedly low presented certainty

caused participants to disagree more with the application inference (finding Ah). P1 and P5 lowered

their agreement rating from 7 (None) to 2 (Certainty), and P8 from 6 to 4. With Full intelligibility,

P8 became convinced by HearMe's displayed 50% certainty by examining the bar chart of weights

of evidence and noting they were very balanced; she consequently lowered her certainty rating.

8.11.2.3 H1B': INTELLIGIBILITY INCREASES IMPRESSIONS OF APPLICATIONS WITH LOW

CERTAINTY WHEN THEY BEHAVE INAPPROPRIATELY

Contrary to H1b, intelligibility was helpful for an application with low certainty when it behaved

inappropriately (finding Aa), even though it did not influence perceived certainty (finding C¬a,l).

Participants appreciated the difficulty of inference, forgave the application, and disagreed less with

it (Al). P5 conceded that it was “very difficult” for LocateMe to estimate the certainty, and thought

“it got it almost right”; she agreed more with the application, changing her rating from 4 (None) to 5

(Certainty). With Full intelligibility, participants more clearly saw how uncertain the applications

were: large margins of error (LocateMe), or a high amount of ambiguity (HearMe). This allowed P8

to understand how HearMe "misjudged the environment," and "agree with its logic based on the

parameters."

202 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.1

2
 D

E
SIG

N
 R

eco
m

m
en

d
atio

n
s

 2
0

2

8.12 DESIGN RECOMMENDATIONS

 Certainty

 Low High

O

v
e

ra
ll

 None

Prioritize improving accuracy
instead of providing

intelligibility.

Intelligible

Provide Intelligibility.

B
e

h
a

v
io

r
A

p
p

ro
p

ri
a

te
n

e
ss

A
p

p
ro

p
ri

a
te

Automatically Hide

User is unlikely to ask
questions if behavior is as

expected.

Automatically Show

Provide intelligibility
automatically if certainty is

high.

N
o

t

On Demand

User will likely ask questions
and receive helpful

explanations.

+ On Demand

Users may ask more
questions to receive more

helpful explanations.

Table 8.9. Summary design recommendations of when and how to provide intelligibility

given the uncertainty in a context-aware application.

There are two ways to apply our findings in terms of application certainty: regarding overall

certainty, or per situation certainty. Considering overall certainty, our findings recommend

providing intelligibility as long as the application usually has high certainty. However, our findings

caution that intelligibility is harmful if certainty is too low, so intelligibility should not be provided

for such applications; their certainty should be improved first. While the precise threshold for what

is a sufficiently high overall certainty depends on the application and domain, our results (see

Figure 8.4) suggest it falls within the range of about 80-90% for a non-critical, "everyday"

application. Table 8.9 summarizes our design recommendations from this study.

Considering certainty per situation, we note that an application that usually has high certainty may

still occasionally have situations with low certainty. Fortunately, in the majority of times with high

certainty, we still recommend providing intelligibility even if it is ultimately wrong and behaves

inappropriately. On the other hand, our recommendation is not immediately clear with low

certainty. The impact of intelligibility on impression also depends on whether the application

behaves appropriately.

8.13 CONCLUSION AND FUTURE WORK 203

8
.1

3
 C

O
N

C
L

U
SIO

N
 an

d
 F

u
tu

re W
o

rk
 2

0
3

If the application behaves appropriately, showing intelligibility compromises the original good

impression the user may have had, causing her to lower her impression. If it behaves

inappropriately, intelligibility can help her realize how difficult the inference task is, and improve

her impression. Unfortunately, an application will not be able to know if it will act appropriately

beforehand. It will be safer to not show intelligibility before it acts, when certainty is low. After it

acts, if the user asks questions, especially if a why not question, it is likely the application behaved

inappropriately, where it is beneficial to show intelligibility. Therefore, just show intelligibility on

demand, when situation certainty is low. Our results (see Figure 8.6, Left) indicate that our

participants have a baseline belief that the application is about 80-85% certainty when it behaved

appropriately. This suggests that, for each situation, a context-aware application may safely provide

intelligibility automatically when it is at least 80% certain, but should provide intelligibility on

demand when it is less certain.

Carefully designing explanations can provide an alternative solution to deal with intelligibility as a

double-edged sword for low certainty. Intelligibility should focus on convincing the user how

difficult the inference task is, and how the application is intelligently tackling it, rather than

implying that the application is incompetent. This could mean not revealing the low certainty in

explanations. For example, HearMe's Sensed Factors visualization explains what input values it

knows, but does not betray HearMe's uncertainty.

8.13 CONCLUSION AND FUTURE WORK

We have described a large controlled study investigating the impact of intelligibility on

understanding and user impressions of context-aware applications with varying certainty from low

to high. This was conducted using lab-based, scenario-driven surveys of two context-aware

applications (location-aware, and sound-aware). Our results show that intelligibility can positive or

negatively impact user impressions, depending on the application's certainty and behavior

appropriateness. Intelligibility is helpful for applications with high certainty, but it is harmful for

applications with low certainty, because the user loses even more trust in its capability. Still,

intelligibility can help users appreciate and forgive applications if they behave inappropriately and

have low certainty. This work explicitly cautions the necessity for a context-aware application to be

sufficiently certain before it leverages intelligibility.

204 CHAPTER 8 | EVALUATING INTELLIGIBILITY UNDER UNCERTAINTY

8
.1

3
 C

O
N

C
L

U
SIO

N
 an

d
 F

u
tu

re W
o

rk
 2

0
4

In this study, we have focused on a passive display for intelligibility, and did not have users act on

the information; they could only use intelligibility to judge their impression of the application.

However, users could also interactively use intelligibility for debugging and finding out why the

application faltered (e.g. [Kulesza et al., 2009]). Perhaps, this could make intelligibility useful

instead of harmful to user impression.

This work provides a stepping stone to understanding how intelligibility affects a user's impression

of a context-aware application. For future work, we plan to gain more lucid and nuanced insights

into the use of intelligibility and how that affects users in real-world situations through deploying

an intelligible prototype in a longitudinal field trial. In preparation for a field deployment, we

evaluated a second version of Laκsa, an intelligible context-aware mobile application, for its usage

and usefulness for improving user understanding. We describe this study in Chapter 9.

205

9 EVALUATING THE USAGE AND

USEFULNESS OF INTELLIGIBILITY

ABSTRACT. Intelligibility has been proposed to help end-users understand context-aware

applications with their complex inference and implicit sensing. Usable explanations can be

generated and designed to improve user understanding. However, will users be willing to use these

intelligibility features? How much intelligibility will they use, and will this be sufficient to effectively

improve their understanding? We present a quasi-field experiment of how participants used the

intelligibility features of a fully-functional intelligible context-aware application. We investigated

how many explanations they willingly viewed, how that affected their understanding of the

application's behavior, and suggestions they had for improving its behavior. We discuss what

constitutes successful intelligibility usage, and provide recommendations for designing

intelligibility to promote its effective use.

9.1 INTRODUCTION

Much of our work on investigating the impact of intelligibility had focused on questionnaire studies

and ‘paper’ prototypes of realistic albeit fictitious context-aware applications (Chapters 4, 5, and 8).

With the Laκsa prototype (Chapter 7), we sought to increase realism in investigating intelligibility

with an interactive prototype. While that work provides a crucial step for designing intelligibility to

be more usable and interpretable, it stopped short of evaluating the impact of intelligibility on

users. In Chapter 8 [Lim and Dey, 2011b], we investigated the impact of intelligibility on

understanding and impression, but this was studied with questionnaires and ‘paper’ prototypes

rather than an interactive prototype. Furthermore, intelligibility was shown “always on” to

participants, so they were biased to look at the explanations. This leaves open the research

questions: even if intelligibility can improve user understanding and trust, will users want to use it,

206 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

9
.1

 IN
T

R
O

D
U

C
T

IO
N

 2
0

6

and, if so, how much? Moreover, given how much they do use, how much will that improve their

understanding of context-aware applications?

Related work has explored the impact of explanations on end-users as they used context-aware

systems. Rukzio et al. [2006] evaluated a mobile phone automatic form filler in a lab study, and

found that “visualizing the uncertainty of the system was mostly not used nor was it helpful.” Tullio et

al. [2007] evaluated an intelligible interruption door display over six weeks, and found that users

were able to “attribute concepts of machine learning to their system,” but had difficulty remembering

relevant features. Cheverst et al. [2005] deployed the Intelligent Office System that provided

explanation visualizations of rules and confidence. However, regarding explanations, their

evaluation focused on eliciting user preference about visualization format, not on their impact.

Welbourne et al. [2010] investigated the use of Panoramic that is able to explain location with

timeline visualizations. However, their evaluation involved participants investigating realistic, but

fictitious, data. Vermeulen et al. [2010] conducted a pilot user study of PervasiveCrystal in a

simulated museum with five participants, who “were able to use the questions interface to find the

cause of events” of three tasks. Kulesza et al. [2009] evaluated the usage, debugging, and

understanding of the Why and Why Not explanations of email filtering application.

This chapter adds to this body of work evaluating intelligible context-aware systems by explicitly

measuring the usage of intelligibility in a high-fidelity prototype that provides over nine

explanation types (e.g., Certainty, Why, Why Not, What If) for three context types (Availability,

Place, Sound). We iterate on Laκsa (see Section 7.2) to investigate usage under realistic situations

with real-time application behavior and automatically generated explanations. We also investigate

the impact of this usage on user understanding of the application’s inference. Our contributions

provide insight into the usefulness of intelligibility by investigating:

1. How much participants use intelligibility in a real context-aware application,

2. Their opinion of the usefulness of the explanations to understand application behavior and

situations, and

3. How useful their use of intelligibility is on understanding and handling of these situations.

The rest of the chapter is organized as follows: we articulate our objective to explore the usage of

intelligibility, and our hypothesis that increased intelligibility usage will improve user

understanding. We developed a functional intelligible context-aware prototype for this study,

which we describe next. Following that, we elaborate on the quasi-field experiment we conducted,

9.2 OBJECTIVES AND APPROACH 207

9
.2

 O
B

JE
C

T
IV

E
S an

d
 A

p
p

ro
ach

 2
0

7

where participants engaged in “everyday” scenarios in-situ using the prototype. We follow this with

the results showing how participants used intelligibility in our prototype and how that improved

their understanding of application inference for each scenario. Finally, we discuss design

implications due usage patterns and constraints, and how to encourage users to use more

intelligibility to further improve their understanding.

9.2 OBJECTIVES AND APPROACH

We have two objectives for this study: one explorative and another hypothesis-driven.

1) Exploring the usage of Intelligibility. We aimed to investigate how users use intelligibility

when facing different scenarios, how much they use, and for how long.

2) Hypothesis: Increased usage of Intelligibility will improve user understanding. We

hypothesize that using intelligibility more will help users better understand application inferences

and the current situation.

To accomplish these objectives, we conducted a quasi-field study where participants used a fully

interactive, intelligible context-aware application under real-world, “everyday” situations (similar

to [Roto et al., 2004]). To improve ecological validity of our results, we minimized interference from

the experimenter by logging and analyzing UI events [Hilbert and Redmiles, 2000] of intelligibility

usage (without thinking aloud), and post-incident interviews. This experimental set-up strikes a

balance between controlling for critical incidences, and allowing participants to use intelligibility

naturalistically. Note that in this work, we do not claim to cover a comprehensive set of situations

or motivations under which intelligibility may or may not be used significantly. However, we seek

to gain an initial insight into how intelligibility may be used in a context-aware application reacting

to a real physical environment.

We next describe the intelligible context-aware prototype we developed and employed to study

intelligibility usage.

9.3 LAΚSA2 PROTOTYPE

Mobile phones allow people to keep in touch with others and be easily reachable. However, there

are times when receiving calls are inappropriate, as they are socially disruptive (e.g., in meetings

208 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

9
.3

 L
A

Κ
SA

2
 P

ro
to

ty
p

e
 2

0
8

and movie theatres), or they interrupt productive work. Users can manually silence their phones,

but they may forget to reset their phones to ring again afterwards [Milewski and Smith, 2000].

Hence, it will be useful if the phone can automatically set the ringer mode (e.g., [Kern and Schiele,

2006; Rosenthal, Dey, and Veloso, 2011]). Also targeting this compelling application problem

domain, we have developed Laκsa2, a mobile application that senses various contexts (Place,

Sound, and Schedule) about the user to automatically infer her Availability, and set her phone’s

ringer mode. Our focus is the use of Laκsa2 as a platform to explore the use of intelligibility in a

context-aware application. Next we describe Laκsa2’s contexts.

Availability: Available, Semi-Available, Unavailable — is inferred from rules regarding the following

three factors.

Place: Office, Café, Library, etc. — represents the semantic location of the user. It is inferred by

sensing latitude and longitude from the Android Location API (uses GPS, Wi-Fi, and cell tower

positioning), and matching to pre-specified named places. The user’s sensed location is modeled as

a radial Gaussian, with decreasing likelihood further away from the latitude and longitude

coordinates (similar to LocateMe in Section 8.5.1). Laκsa2 stores a list of named places with

coordinates and size (circle radius) to compare against to infer whether the user could be at each

place. Each Place is inferred with different certainty based on how much the user's estimated

location area "overlaps" with the area of the named place: more overlap leads to higher certainty.

Sound: Talking, Music, and Ambient Noise — represents the sound activity that Laκsa2 recognizes

from what the phone's microphone hears. Inferences come from a naïve Bayes classifier trained on

sound samples. Features extracted are similar to SoundSense [Lu et al., 2009]: e.g., mean of power,

low-energy frame rate, spectral flux, and bandwidth. These are renamed to lay terms that end-users

can understand.

Schedule: Personal, Work, Unscheduled or Other Event — represents the user’s Google Calendar,

and, in particular, which calendar the current event is in.

9.3.1 INTELLIGIBILITY FEATURES

Having defined the context types, we make Laκsa2 intelligible so that users can understand what it

knows and how it makes inferences. Laκsa2 provides explanations from the Intelligibility Toolkit

(Chapter 6) ported to Android:

9.3 LAΚSA2 PROTOTYPE 209

9
.3

 L
A

Κ
SA

2
 P

ro
to

ty
p

e
 2

0
9

1. What is the inference for the context? With how much Certainty? When was this value

inferred?

2. History: what was the inference at time H?

3. Inputs: what details affect this context? (Factors, input features, related details, etc.)

4. Outputs: what values can this context be inferred as? With how much Certainties are these

values inferred?

5. Why was this value inferred?

6. Why Not (Why Alt): why wasn’t this inferred primarily as Y, instead? (Note that alternative

values may have been inferred, but not necessarily as the first choice.)

7. What if the factors are different, what would this inference be? (Requires user manipulation)

8. Description: meaning of the context terms and values.

9. Situation of what was happening to affect the inference to provide a ground truth of what was

being inferred (e.g., playing an audio clip of what was heard).

Some explanation types have been aggregated to reduce the number of questions users need to ask

(e.g., What + Certainty + When, Outputs + Certainties). For simplicity, What If was only provided for

Availability. Also, Schedule does not have particularly expressive explanations, because it is easy to

understand calendars and events.

9.3.2 DESIGN ITERATIONS AND UPDATES

While this iteration bears many similarities to the original Laκsa prototype (Section 7.2), its design

and functionality has been significantly refined and it uses streamlined questioning to be simpler

for users. Further feedback from colleagues, who are HCI researchers, helped make the user

interaction more consistent throughout the application, and reduced the application functionality

so that users can grasp its concepts within a two-hour study. Therefore, we removed the Motion

context of Laκsa v1. Laκsa2 also supports more explanation types that are relevant to realistic use,

such as History and Situation. Finally, Laκsa2 is not a social-awareness application like its

predecessor, and it was fully deployed on a mobile phone instead of a Tablet PC.

For the rest of this chapter, we will refer to Laκsa2 as Laκsa, unless otherwise stated.

2
1

0
 C

H
A

P
T

E
R

 9
 | E

V
A

L
U

A
T

IN
G

 T
H

E
 U

SA
G

E
 A

N
D

 U
SE

F
U

L
N

E
SS O

F
 IN

T
E

L
L

IG
IB

IL
IT

Y

A
va

ila
b

ili
ty

So
u

n
d

Pl
ac

e

1

2

3

4

6

7

8

9

History What

Inputs Why Not

Outputs

What Outputs

Inputs Why Why 2nd Why 2ndWhy

What Outputs

Walkthrough of troubleshooting S3

After getting an audible call in the Library, a participant may follow
these steps to troubleshoot why Laκsa did not silence the phone.

0. After turning the screen on, she will see the current Availability
inference as a What explanation.

1. She can investigate about a specific past event with History.
2. After selecting the desired event, in this case, one at 5:50:36 PM,

she sees the What explanation of her Availability at that time.
3. She can see which rules were triggered and which were

unsatisfied via the Outputs explanation.
4. On selecting an unsatisfied rule, she sees a Why Not expl anation

indicating that Laκsa did not think she was at the Library.
5. She can dig deeper and ask about the Pl ace inference to see the

What explanation indicating Laκsa thought she was at the Office
with 14.4% Certainty.

6. On inspecting the possible places with the Outputs explanation,
she can see Library was its second choice.

7. She can inspect Why she was inferred to be at the Office, and see
that her sensed location (concentric blue bubbles) overlaps a lot
with the Office bubble (green);

8. Go back, and
9. Inspect Why the Library had a lower Certainty (because the

Library bubbl e was too small, while the Office bubble was too
big).

Inputs

5

9
.3

 L
A

Κ
SA

2
 P

R
O

T
O

T
Y

P
E

 2
1

1

Figure 9.1. Screenshots of Laκsa showing several explanation types of the upper-tier context Availability, and lower-tier

contexts Sound and Place. Arrows show how a user can transition from one explanation to another. The bold trace indicates how

a participant may explore the intelligibility features in nine steps to troubleshoot Scenario 3 about the phone ringing in the

Library. See Section 7.3 for a description of some of the UI design.

A
va

ila
b

ili
ty

So
u

n
d

Pl
ac

e

1

2

3

4

6

7

8

9

History What

Inputs Why Not

Outputs

What Outputs

Inputs Why Why 2nd Why 2ndWhy

What Outputs

Walkthrough of troubleshooting S3

After getting an audible call in the Library, a participant may follow
these steps to troubleshoot why Laκsa did not silence the phone.

0. After turning the screen on, she will see the current Availability
inference as a What explanation.

1. She can investigate about a specific past event with History.
2. After selecting the desired event, in this case, one at 5:50:36 PM,

she sees the What explanation of her Availability at that time.
3. She can see which rules were triggered and which were

unsatisfied via the Outputs explanation.
4. On selecting an unsatisfied rule, she sees a Why Not expl anation

indicating that Laκsa did not think she was at the Library.
5. She can dig deeper and ask about the Pl ace inference to see the

What explanation indicating Laκsa thought she was at the Office
with 14.4% Certainty.

6. On inspecting the possible places with the Outputs explanation,
she can see Library was its second choice.

7. She can inspect Why she was inferred to be at the Office, and see
that her sensed location (concentric blue bubbles) overlaps a lot
with the Office bubble (green);

8. Go back, and
9. Inspect Why the Library had a lower Certainty (because the

Library bubbl e was too small, while the Office bubble was too
big).

Inputs

5

212 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

9.3.3 IMPLEMENTATION AND USER INTERFACE

We developed Laκsa2 for Android 2.2 Froyo (API level 8), and deployed it on the Motorola Droid for

the user study. Sensing for location, calendar events, and microphone audio were performed using

background services on the phone every 30 seconds. Higher-level inferences for Place, Schedule,

Sound, and Availability are computed in the background, in response to each sensed instance. To

recognize sounds, we used a port of Weka for Android3. We also partially ported the Intelligibility

Toolkit [Lim and Dey, 2010] to Android, to support the querying for various questions, generation

and reduction of explanations about the contexts, and presentation of the explanations in various

graphical and textual formats. Unlike Laκsa v1 (see Section 7.4), the Laκsa2 prototype is fully

implemented on the mobile phone for sensing, inferring, reacting, and displaying explanations.

Figure 9.1 shows several screenshots of the Laκsa2 prototype with a walkthrough example of how

to use it. Appendix H shows more screenshots of the application and several explanation types.

Each explanation is viewed as a page view. Users can transition from one to another by clicking on

buttons, menu items (from the options menu), and flinging (swiping). Some explanations allow

scrolling to see more details.

9.4 SCENARIO-DRIVEN QUASI-FIELD STUDY

To explore the use of the intelligibility features in Laκsa, we conducted a controlled scenario-driven

user study, where participants encountered situations that may arise with the use of Laκsa. We

were interested in whether and how participants used the intelligibility features to understand the

application behavior. We conducted a quasi-field study rather than a field deployment to (i) present

participants with controlled critical incidences, and (ii) observe and measure their subsequent

behaviors due to these incidences. It otherwise would have been difficult to know when critical

incidences occurred in the field, or why.

9.4.1 PROCEDURE

An experimenter first briefed the participant about the study, and presented her with printed

instructions. These describe how to use the Android phone, Skype (for receiving or checking calls),

and Laκsa’s functionality and interface. The experimenter gave a walkthrough of Laκsa,

3 Weka for Android. https://github.com/rjmarsan/Weka-for-Android. Retrieved 26th August 2011.

https://github.com/rjmarsan/Weka-for-Android

9.4 SCENARIO-DRIVEN QUASI-FIELD STUDY 213

9
.4

 S
C

E
N

A
R

IO
-D

R
IV

E
N

 Q
u

asi-F
ield

 Stu
d

y
 2

1
3

9
.4

 S
C

E
N

A
R

IO
-D

R
IV

E
N

 Q
u

asi-F
ield

 Stu
d

y
 2

1
3

demonstrating its features and how to interpret them. We provided participants with availability

rules that Laκsa was pre-programmed with: four rules setting availability to Unavailable and Semi,

and any other case as Available (e.g., if the user is in her office and Laκsa hears talking, her status is

set to Unavailable). Participants did not touch the phone until the first scenario (S1).

The participant was instructed that she works with equally ranked coworkers in several offices, and

that they work together on a team project. She was provided with the following motivation: she

needs to evaluate Laκsa as a newly acquired application, which can improve her team’s productivity

by moderating interruptions. She is tasked with the overall goal of determining when Laκsa

behaved appropriately or not, and figuring out how to improve its future behavior by (i) editing

availability rules, (ii) changing lower-level settings (e.g., size of Place bubbles), or (iii) changing

behavior (e.g., lower the music volume). She would also be responsible for subsequently teaching

her coworkers how to best configure Laκsa. After reading the instructions, the participant begins

the scenarios.

9.4.2 CONTROLLED IN-SITU SCENARIOS

The user study was scenario-driven to expose participants to situations they may encounter with

Laκsa. To increase the visceral quality of the scenarios, each scenario is set up by bringing the

participant to the necessary places (Office, Library, or Café) and asking her to carry out an initial

task, e.g., looking for a library book (S3). The experimenter shadowed the participant for every

scenario. The participant engaged in the activity for a few minutes to become absorbed in the

situation. Critical incidences were triggered by the experimenter calling the participant’s phone (if

necessary), and presenting her with a printed flash card describing what was happening, and any

associated dialog with coworkers during the phone call. The participant was free to interact with

Laκsa as much or as little as she wished, and prompted to not think aloud. For each scenario, after

she was done looking at Laκsa, she turned off the screen, and the experimenter conducted a

structured interview with audio recording. She was asked about her opinion of the situation and

the application, her understanding of how Laκsa was making inferences, and any suggestion she

may have for improving its behavior.

We employed four scenarios to span three situational dimensions: (i) Exploration / Verification

(S1) of Laκsa’s functionality and explanations; (ii) Fault Finding (S2, S3), where Laκsa behaved

inappropriately, and participants had to troubleshoot it; and (iii) Preemptive Exploration (S4)

where participants investigated a potential future situation.

214 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

S1: Talking in the office. Training session where the participant learned Laκsa’s core features and

explanations. She could explore Laκsa as much as possible to familiarize herself with the

application UI and explanations.

S2: Missed call while reading news and listening to music. The

participant is asked to read any news articles they fancy from

www.cnn.com while they listen to a song4 through the computer

speakers. Meanwhile, she received multiple calls from a coworker,

but she misses the first few calls. The experimenter actually called

the participant’s phone but it did not ring the first few tries since

Laκsa automatically silenced its ringer. Near or at the end of the

song, the phone would ring again and the participant would notice

the call. Through a flash card, the participant learned that her coworker, Damien, was frustrated

from trying to call her repeatedly over the past three minutes; he would like her to check her email,

and fix her phone. The email pertained to finding a library book to review for their shared project.

Laκsa had mis-inferred Sound as Talking instead of Music, and behaved inappropriately by

silencing the phone.

S3: Phone interruption in the library. As a follow-up to

Damien’s email, the participant walked to a nearby library to

search for the book, and read it. Meanwhile, the experimenter

called her phone again, causing it to ring audibly in the quiet

library. This simulated a coworker calling. Laκsa had mis-inferred

the participant’s Place as still in the Office instead of Library, and

behaved inappropriately by allowing the phone to ring.

4
 Sound of Silence by Simon and Garfunkel. http://youtu.be/eZGWQauQOAQ Retrieved 17 September 2011.

http://youtu.be/eZGWQauQOAQ

9.5 MEASURES AND DATA PREPARATION 215

9
.5

 M
E

A
SU

R
E

S an
d

 D
ata P

rep
aratio

n
 2

1
5

9
.5

 M
E

A
SU

R
E

S an
d

 D
ata P

rep
aratio

n
 2

1
5

S4: Preemptively checking

availability in café. The

participant received a flash card

describing that she frequents a

café (in a nearby building), and

should check whether she will be

able to receive calls there.

Participants could sit where they

were and check for explanations in such a hypothetical situation or visit the care, but they were not

prompted what to do to achieve this objective.

9.5 MEASURES AND DATA PREPARATION

We are interested in measuring how useful intelligibility was for the participants in terms of how

much they used, and how that impacted their understanding of Laκsa, and their suggestions on how

to control it to resolve any issues.

9.5.1 SMARTPHONE OWNERSHIP

To control for technical experience among participants, we asked participants whether they owned

smart phones (Smartphone Ownership) and for how long. This measure may distinguish users

who are more technology savvy and more interested to explore new technologies, from those who

are not.

9.5.2 USAGE OF INTELLIGIBILITY

To measure intelligibility usage, we logged when participants viewed each explanation page in the

UI. This allowed us to measure, for each scenario, which explanation types each participant viewed,

how many (# Explanation Types), when they were viewed, for how long (Duration), how often

(View Count), and their sequence order (Step number). We built a network graph for each

participant scenario to illustrate the sequence diagram of how he used intelligibility (e.g., Figure

9.1). With these we can observe general patterns of use, and identify errors in the logging. Since

participants may view certain pages only to get to another page (e.g., transitioning through

Availability Inputs to get to explanations about Place), they may only view them for a very brief

duration. Hence, we filtered out views with durations < 1 second. Additionally, intelligibility usage

216 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

patterns may also affect what a user learns of the application. One such metric is the Context Ratio

of how many explanation types of deeper contexts (Place and Sound) are viewed compared to that

of the shallower context (Availability). Having generated these metrics, we wanted to investigate if

they influence user understanding.

9.5.3 USER UNDERSTANDING AND SUGGESTIONS FOR CONTROL

We measure how well participants understood the application behavior and scenario circumstance

by transcribing audio from interviews along with notes. To measure their understanding, we asked

them what they understood about what Laκsa knew and how it was reasoning. The transcript was

coded into units of beliefs to characterize their mental models, using the coding scheme in Table 9.1.

Their statements are a lower bound of their understanding, since they may not have said

everything they believed. To derive a single metric of understanding, an Understanding Score is

calculated for each participant scenario by adding all 7 codes for both Place and Sound (Max=14).

This score represents the breadth and depth of understanding a user has for the scenario.

Another measure of how well participants understood Laκsa is how many effective Control

Suggestions they provided to overcome any issues or problems in the scenarios. A weighted

Control Score is calculated from summing scores for each code in the scheme in Table 9.2. This

score represents the number and effectiveness of suggestions provided for the scenario. Partially

effective suggestions are given only half a score. These suggestions may have side-effects that

compromise application performance in other situations (e.g., adjusting the weights of a sound

factor to influence recognition).

Note that so as not to prime or mislead participants with knowledge about how Laκsa makes

inferences, we do not ask multiple choice comprehension questions. Instead, we record open-ended

descriptions from participants, which we code to determine their level of understanding.

9
.5

 M
E

A
SU

R
E

S A
N

D
 D

A
T

A
 P

R
E

P
A

R
A

T
IO

N
 2

1
7

Code
κ

Description / Example Transcripts
Place Sound

U1 Value .83 .89 Indicated knowledge of the inferred value of the factor.

U2 Alternative
Values

.78 .85 Indicated knowledge of other inferred (2nd, 3rd, etc.) or uninferred values.

Compared different values that were inferred differently,

e.g., P01S2 "Talking (evidence=85.4) very close to music (84.?). Could have gone any way."

U3 Certainty .94 .87 Described certainty of inferred value,

e.g., P02S3: "It was 9.3% certain I was at the Office"; P03S3: "blue bubbles were too big."

U4 Inputs .85 .94 Mentioned at least one input feature / factor of the context,

e.g., Pitch, Periods of Silence, "the blue bubble was directly over the Library building."

U5 Model .86 1 Described the mechanism for inferring the factor,

e.g., P17S3: "It looked like it was actually probably closer to the library, but since the library bubble was very
small then it calculated the probability was very low."

U6 Technical .90 0* Provided a deep technical mechanism for the inference not explicitly described in the explanations,

e.g., P18S3: "It seems to be based on its Wi-Fi connection, and … because it said networking and it gave the
location badly and we’re deep inside a bunch of concrete and metal, so the GPS shouldn't be working right now."

U7 Situation
Justification

.80 .94 Provided a situational justification for the phone's inference that was not from the intelligibility UI,

e.g., P02S2: "The music was much mellower, and they were really singing"; P07S3: "We were very close to
previous location [Office], not easy to pinpoint current place [Library]."

Table 9.1: Coding scheme for user understanding. Participants' mental models were decomposed into beliefs based on what they

explicitly said and tacitly implied. Each scenario may have multiple codes, each either 0 or 1 indicating whether the correct

corresponding beliefs were expressed. We only coded for Place and Sound factors, since participants’ understanding of

Availability can be derived from their understanding of these. Inter-coder reliabilities (κ) for each code were calculated with a

35% random sample of the scenarios by a second coder. * denotes apparent low reliability due to low count.

2
1

8
 C

H
A

P
T

E
R

 9
 | E

V
A

L
U

A
T

IN
G

 T
H

E
 U

SA
G

E
 A

N
D

 U
SE

F
U

L
N

E
SS O

F
 IN

T
E

L
L

IG
IB

IL
IT

Y

Code κ Description / Example Transcripts

C1 Availability
Rules

.89 Proposed a new rule, editing an existing rule, or deleting one,

e.g., delete rule "Someone's Talking"; add rule "Office + Music Vibrate"

C2 Place Settings .90 Suggested to adjust the bubbles of Places by enlarging, shrinking, or moving them.

Suggested to threshold blue bubbles to calculate overlap between sensed location and Places.

C3 Sound Settings .89 Suggested to adjust a feature weight to tweak inference;

Suggested to expand training data, e.g., P10S2: "Teach it more about music by inserting iTunes catalog."

C4 Change
Behavior

.92 Proposed to change behavior to ameliorate problems in the scenario,

e.g., "Reduce the volume of music"; "Have phone screen facing up (when on table) so that it will be visible when it lights
up during a call"

Table 9.2: Coding scheme for control suggestions. Participants' suggestions to improve Laκsa for each scenario were coded with

values: 0=Ineffective, 0.5=Partially effective, 1=Effective. Each code may be counted multiple times depending on how many

suggestions were made. Inter-coder reliabilities (κ) were calculated with a 50% random sample by a second coder.

9.6 RESULTS 219

9
.6

 R
E

SU
L

T
S 2

1
9

9.5.4 PERCEPTION OF APPLICATION AND EXPLANATIONS

We were interested in how participants perceived Laκsa and its explanations for each scenario. As a

manipulation check of the scenario designs, we asked participants how they perceived Laκsa’s

Behavior Appropriateness (7-point Likert scale: -3=Strongly Inappropriate, 3=Strongly

Appropriate). We also asked if they agreed or disagreed that the explanations were useful in the

scenario (Explanation Usefulness; 7-point: -3=Strongly Disagree, 3=Strongly Agree).

Next, we describe how participants used intelligibility, and how that impacted their understanding.

We treated S1 as a warm up for participants and excluded its results from our analyses.

9.6 RESULTS

Using a local recruiting website, we recruited 19 participants (11 females) with ages 19 to 65

(Median=26) years. We dropped P13 because he did not continue beyond S2, and did not

understand the scenarios well. Nine participants were graduate students, and three were

undergraduates. P01, P16, and P17 were students in a computer-related field (Electrical and

Computer Engineering, Software Engineering, and Learning Technology). P18 was a web

programmer, while the others spanned a wide range of areas (e.g., actor, pianist, field interviewer,

hospital administrator, chemical engineering, retiree). 11 participants owned smart phones and

one participant did not even own a cell phone. We engaged each participant for 1h 44min on

average (range: 1h 29m to 1h 58m). Each participant was compensated $20.

While we strove to make all user experiences consistent for the experiment, we also strove to have

Laκsa behave faithfully to the scenarios the participants were situated in, and what they did.

Consequently, there was some variability in what Laκsa sensed and the resulting explanations. For

example, location sensing accuracy depended on where the participant decided to walk to, weather

conditions and other environmental factors affecting signal strength; when the participant walked

to the café in S4, she may heard background music, or found a seat nearby people who are talking.

For S4, participants exhibited two distinct behaviors to explore the hypothetical situation: they just

sat where they were and tried to use the What If explanation facility (S4-if, 10 cases), walked to the

café to test Laκsa in-situ (S4-situ, 11 cases), or performed both activities. Hence, we treat these as

distinct scenarios.

220 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

In this section, we report results of participants’ perception of Laκsa's behavior and explanations,

how they used intelligibility, their understanding of Laκsa's behavior, and how their usage affected

their understanding. We supplement the quantitative data with descriptions of what participants

did and said, and provide interpretations.

9.6.1 PERCEPTION OF APPLICATION BEHAVIOR AND EXPLANATIONS

A one-way ANOVA with Scenario as the factor found a difference in Behavior Appropriateness

(F3,25=3.90, p<.05), specifically, that Laκsa's behavior was perceived as more inappropriate for S2

and S3 than for S4 (contrast test: p<.01). This verifies the manipulation check that participants felt

that Laκsa behaved inappropriately for S2 and S3 (see Figure 9.2, Left).

Overall, participants perceived explanations as useful (M=1.52, Std.Err.=0.23), even though

perceived application behavior appropriateness varied (see Figure 9.2). A one-way ANOVA with

Scenario as the factor found a difference in Explanation Helpfulness (F3,25=3.90, p<.05), specifically,

that explanations were less helpful in S2 than S4, and S3 indistinguishable with S2 or S4 (Tukey

HSD test: p<.05; see Figure 9.2, Right).

Figure 9.2. Perceived Application Behavior Appropriateness (Left) and perceived

Explanation Usefulness (Right) across scenarios. We include S1 in the graph for comparison,

but not in our analysis. Error bars indicate standard errors.

Next, we characterize how participants used intelligibility: how often they looked at explanations,

and for how long.

-3

-2

-1

0

1

2

3

2 3 4-if 4-situ

B
e

h
a

v
io

r
A

p
p

ro
p

ri
a

te
n

e
ss

Scenario

-3

-2

-1

0

1

2

3

1 2 3 4-if 4-situ

E
x

p
la

n
a

ti
o

n
 U

se
fu

ln
e

ss

Scenario

9.6 RESULTS 221

9
.6

 R
E

SU
L

T
S 2

2
1

9.6.2 INTELLIGIBILITY USAGE

From usage logs combined across S2 to S4, we determined participants’ overall usage of

intelligibility (see in Table 9.3), and their usage for each explanation type (see Table 9.4). Most

participants actively looked at many Explanation Types (Median=8), many times (View Count

Median=21), for about 3 minutes per scenario. This suggests they valued intelligibility enough to

use it. They also tended to look more at deeper contexts (Place or Sound) than just Availability

(Context Ratio Median=1.4). Some participants were very engaged in using intelligibility (View

Count Max=65, Scenario Duration Max=12.5min), while some were conservative: min 2 views

(P08S4-if), 1 explanation type (P14S4-situ), scenario duration <1 min (P08S4-if), or not looking at

deeper contexts (Context Ratio=0, P02S2, 7 participants for S4-if, P05S4-situ, P14S4-situ).

From Table 9.4 Left, we identify which explanation types were more popular, i.e., higher view count.

The Availability What explanation was the first page that participants saw when they turned the

screen on, so it has the highest count. Availability Inputs is also high because most participants used

it as a gateway to see explanations of deeper contexts. Availability History was popular because

participants had to ask about specific events in the past. Participants viewed Outputs to see the

expected inferences that were not made (particularly for Availability, and Sound). Although

participants seldom viewed Definitions, they did so more for Sound because they were less familiar

with its concepts. Due to the temporal nature of Sound, 9 participants played audio clips of what

Laκsa heard (Situation). 9 participants also used the Refresh function 30 times in total to get

immediate feedback about the inference. They used it mostly during S3 and S4-situ, about

Availability and Place, and for What, Inputs explanation types.

Per Scenario Mean
Std.

Dev.

Std.
Error

Min Median Max

Steps (unfiltered) 27 16 2 2 23 71

View Count 24 15 2 2 21 65

Explanation Types 7.9 3.4 0.4 1 8 19

Context Ratio 1.8 1.8 0.2 0 1.4 8

Total Duration (s) 205 136 18 52 196 749

Table 9.3. Summary statistics of intelligibility usage by participant scenario.

222 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

Total View Count

Median Duration (s)

A
v

ai
la

b
il

it
y

P
la

ce

So
u

n
d

 A
v

ai
la

b
il

it
y

P
la

ce

So
u

n
d

What + Certainty 232 114 69

5.7 3.1 3.2

History 130 5 3

7.5 - -

Outputs + Certainty 84 102 33

6.4 5.6 4.9

Inputs 217 45 60

7.1 6.4 6.0

Why 26 16 44

3.5 9.9 6.1

Why Not (Why Alt) 21 35 41

4.7 9.6 4.9

What If 31 - -

24.8 - -

Definition 5 7 28

- - 6.1

Situation - - 15

Table 9.4. Usage of explanation types: total view count of explanation types for all

participant scenarios, and median durations for respective views (for Total View Count >

15). Mean View Count per scenario can be calculated by dividing by number of participant

scenarios, N=57. Colors show a heat map of values and relate to the numerical value.

We can also see how much time participants spent looking at each explanation type (Table 9.4,

Right). While What If was not used often, when it was, participants spent significant time with it.

This is because it is an interactive facility rather than a static display. For the other explanation

types, participants on average spent less than 10 seconds viewing them, and may even view them

as quickly as about 3 seconds. Furthermore, participants spent more time on explanation types that

were more complex or contained more information (e.g., Availability Inputs > Why, Place Why >

Inputs, Sound Inputs > What).

9.6.3 CORRELATIONS BETWEEN INTELLIGIBILITY USAGE AND ITS IMPACT

Given the variation in intelligibility usage, we next explored how that affected participant

understanding, control suggestions, and perception. We calculated correlations between our

metrics of intelligibility usage, user understanding, control suggestions, and perception (see Table

9.5). These suggest some relationships, which we interpret. When participants perceived the

application as behaving less appropriately, they viewed more explanations (a) and more types (b),

spent more time exploring explanations (c), provided more suggestions for controlling and fixing

the behavior (d), but perceived explanations as less useful (e). They had higher Understanding

9.6 RESULTS 223

9
.6

 R
E

SU
L

T
S 2

2
3

scores when they viewed more explanations (f, h), viewed more about deeper contexts than

shallower ones (i), or spent more time looking at explanations (j). The same was true for their

Control score, perhaps due to their improved understanding (k). Strangely, explanation usefulness

was not correlated with intelligibility usage (g), and participants who perceived explanations as

more useful had fewer suggestions for effective control (l).

Usage Impact

Pearson’s R

V
ie

w
 C

o
u

n
t

#
 E

xp
la

n
at

io
n

s

C
o

n
te

xt
 R

at
io

T
o

ta
l D

u
ra

ti
o

n

U
n

d
er

st
an

d
in

g

C
o

n
tr

o
l

E
xp

la
n

at
io

n

U
se

fu
ln

es
s

App Behavior Appropriateness -.37 a -.32 b -.02 -.41c -.11 -.34 d .40 e

View Count

.81 .20 .63 .43 f .29 -.17 g

Explanation Types

.26 .45 .36 h .30 -.15

Context Ratio

 .06 .42 i .30 -.05

Scenario Duration

.20 j .13 -.08

Understanding

.41 k .05

Control

-.23 l

Table 9.5. Correlations between usage of, and impact due to intelligibility. Significant

correlations underlined (single: p<.05, double: p<.01). Superscript letters refer to

interpretations in text passage.

Now that we see some potential relationships between intelligibility usage and its impact, let us

explore how well participants understood Laκsa, and conduct statistical tests of whether and how

usage affects understanding.

9.6.4 USER UNDERSTANDING AND CONTROL SUGGESTIONS

We first report the average understanding participants had. For each scenario, participants

articulated 0 to 8 correct beliefs about Laκsa's behavior (Median=4). Figure 9.5 (Left) shows the

distribution of their correct beliefs. 41% of the beliefs were about the awareness of the inferred

Value for Place and Sound, 28% about a broader understanding of the inference (Alternative Values

and Certainty), 15% about the Inputs state and Model mechanism, and 2.5% about deeper

Technical details. 14% of the beliefs were drawn from the situation to justify Laκsa's behavior.

While not coded, some participants expressed incorrect mental models, such as believing that the

224 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

Place inference influences Sound inference, and vice versa (e.g., P14-S2: "[Laκsa] infers location first

[Office], then uses that to infer sound is likely talking [, instead of music]").

Participants provided 0 to 6 correct Control Suggestions (Median=2) for each scenario, and had an

average Control Score of 2.10 (Std Err=0.29). This is significantly greater than 1 (i.e., H0: Score>1,

p<.01). Figure 9.6 (Left) shows the distribution of effective and partial Control Suggestions to

improve Laκsa's behavior: Availability Rules (29%), Settings (27% Place, 8% Sound), Behavior

Change (36%).

Regardless of how participants used intelligibility, on average, they had non-zero Understanding

and Control scores (Figure 9.5, Left; Figure 9.6, Left). However, the extent and pattern of

intelligibility usage did affect how well participants understood Laκsa, as we shall see next.

9.6.4.1 IMPACT OF INTELLIGIBILITY USAGE ON UNDERSTANDING AND CONTROL SCORES

From the correlations between usage and impact (Table 9.5), we chose View Count and Context

Ratio as factors of intelligibility usage. We split View Count into discrete intervals of 10 counts

(sample size: 9-16); we split Context Ratio into two groups Shallower (N=34) and Deeper (N=20),

where participants saw twice as many explanations about Place or Sound than Availability. We also

consider Smartphone Ownership as a factor which may influence understanding and control.

IMPACT ON UNDERSTANDING SCORE

We performed a mixed-model analysis of variance with Participant as the random effect, nested in

Scenario; View Count, Context Ratio, and Smartphone ownership as main effects; and

Understanding Score as the dependent variable (R2=.466). We found a marginal difference across

View Count groups (F4,45=2.54, p=.05; see Figure 9.3, Left), and a contrast test found that when View

Count <30 instead of ≥30, Understanding Score was lower (p<.05). Moreover, the score was higher

when participants viewed explanations of Deeper contexts ≥2 times more than Shallower ones

(F1,45=6.92, p<.05; see Figure 9.3, Right). There was no difference in Understanding across

Smartphone Ownership.

IMPACT ON CONTROL SCORE

We performed a similar mixed-model analysis of variance for Control Score as the dependent

variable (R2=.466). There was no difference across View Count groups (p=n.s.), but Control Score

was higher for Deeper context ratios than Shallower ones (F1,45=8.00, p<.01) and higher for

9.6 RESULTS 225

9
.6

 R
E

SU
L

T
S 2

2
5

participants who owned smart phones (F1,45=4.38, p<.01). See Figure 9.4, Right. To investigate

whether Context Ratio or Smartphone Ownership better explains the variance in the Control Score,

we fit three linear models varying the effects. Our results in Table 9.6 suggest that Context Ratio is a

more predictive factor than Smartphone Ownership.

Figure 9.3. Participants had a higher Understanding Score when they viewed ≥30

explanations than fewer (p<.05, Left), and when they viewed explanations of Deeper

contexts ≥2 times more than Shallower ones (p<.05, Right).

Figure 9.4. (Left) Control Score is higher when participants ask more explanations about

Deeper contexts (Place and Sound) than Availability. (Right) Participants who owned smart

phones also had higher Control scores. Control scores were not influenced by View Count.

View Count

Context
Ratio

Smartphone
Ownership

R2

1 .466

2 .413

3 .380

Table 9.6. Linear regression models with R2 values showing which factors better explain

Control Scores.

0

1

2

3

4

5

6

0-9 10-19 20-29 30-39 ≥40

View Count

U
n

d
e

rs
ta

n
d

in
g

 S
co

re

Shallower Deeper (≥2)

Context Ratio

0

1

2

3

4

Shallower Deeper (≥2)

Context Ratio

C
o

n
tr

o
l

S
co

re

No
Smartphone

Own
Smartphone

Smartphone Ownership

226 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

Intelligibility usage also affected the depth of understanding participants expressed. Figure 9.5

(Right) shows that when participants had deeper Context Ratios, they described 2.0 times more

details about the factor inference (Alternative Values, Certainty, Inputs, Model, and Technical), but

mentioned fewer Situation Justifications. Similarly, they provided 2.2 times more types of Control

Suggestions, especially about Settings (Figure 9.6, Right).

Figure 9.5. Distribution of belief types of Understanding overall, and by Context Ratio;

normalized per scenario. Similar distribution for low View Count (<30) vs. high.

Figure 9.6. Distribution of effective suggestions participants made to improve Laκsa's

behavior; normalized for each scenario. (-) denotes partially effective suggestions with side-

effects. Note this is not the weighted Control Score.

In summary, our results show how participants were willing to use intelligibility, and how quickly

or deeply they used it. This satisfies our hypothesis that more Intelligibility Usage (View Count and

Context Ratio) improves Understanding.

0

1

2

3

4

5

Overall

U
n

d
e

rs
ta

n
d

in
g

 B
e

li
e

fs

Shallower Deeper (≥2)

Justification

Technical

Model

Inputs

Certainty

Alt Value

Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Overall

C
o

n
tr

o
l

S
u

g
g

e
st

io
n

s

Shallower Deeper (≥2)

Behavior

Behavior (-)

Settings

Settings (-)

Rules

Rules (-)

9.7 DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS 227

9
.7

 D
ISC

U
SSIO

N
, Im

p
licatio

n
s, an

d
 R

eco
m

m
en

d
atio

n
s

 2
2

7

9.7 DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS

We discuss what we have learned about how intelligibility is used, and how that affects user

understanding of context-aware applications. These have implications on how intelligibility should

be provided, and how we should design intelligibility to facilitate its more effective use.

9.7.1 USAGE AND USEFULNESS OF INTELLIGIBILITY

By the extent that our participants viewed the explanations, we can conclude that intelligibility was

useful for them to (i) engage with intelligibility (some participants deeply so), (ii) rate explanations

as useful, and (iii) gain better understanding of application behavior. We next discuss how they

used intelligibility, and how certain usage patterns were more effective in improving user

understanding.

9.7.1.1 SELF-REPORTED USEFULNESS OF INTELLIGIBILITY

Similarly to our previous results in Chapter 8, perceived explanation usefulness was also affected

by application behavior appropriateness (Section 9.6.1). Nevertheless, on average, participants

perceived intelligibility explanations as useful even when the application behaved inappropriately

(see Figure 9.2). Participants found the explanations interesting and viewed them to satisfy their

curiosity (e.g., P01S1: “for figuring out what the sensed factors are like”). In S4, P02 likes that the

What If explanation “enabled [him] to get a reading before even leaving [for the café].” Explanations

helped reinforce the appropriateness of application behavior by showing that the application also

correctly inferred other details (e.g., for S4, P01 was satisfied that the Sound was correctly inferred

as Music and the Location was sensed correctly as the Café).

Even when the application behaved inappropriately, some participants found explanations useful.

For S2, P10 found the explanations “surely helpful” and was able to determine that the music heard

was recognized as talking, because the song “reminds [him]of people talking.” For S3, P18 felt that

the explanations were “very plain” and mentioned that “I could tell why the problem was that it did

not detect the location of the library.”

However, there were occasions when participants did not find explanations useful. For S1, P11

confessed that “phones, in general, makes [her] cranky” and felt that there was too much information

and too many details. In S2, P06 gave a compromise rating for explanation usefulness (Neither

Disagree Nor Agree), giving the reason: “I guess I understood like what setting it was in, but [Laκsa]

228 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

doesn’t really seem to sense its environment correctly.” For S3, P07 “was trying to figure out why it

sends out at to the office opposed to library and was having difficulty figuring that out.”

Finally, although explanations may not be useful for certain situations, some participants felt that,

in general, it is useful (e.g., for S2, P08 felt that she would have “naturally looked at the

explanations,” in general, and although, “in this case [S2], it was like a waste of time, but I don’t regret

looking at it”).

9.7.1.2 DIVERSE USAGE OF EXPLANATION TYPES

Participants used a diverse range of explanation types (see Table 9.4) and in diverse ways. What

and Inputs were conduits to other explanations for participants to learn deeper reasons. However,

although some explanation types were used less than others, participants viewed them for longer

durations when they did (e.g., Place Why / Alt). Furthermore, as with Section 7.8 [Lim and Dey,

2011a], the sequence diagrams of our participants revealed a variety of usage styles (e.g., quick

comparison between Why and Why Alt reasons, diving into a deeper context after going straight to

Availability Inputs).

Unlike what was found in Section 4.6.3 [Lim, Dey, and Avrahami, 2009], our participants felt that

the What If explanation was easy to use and liked it (e.g., P11S1: "[Using] it was just more fun … I like

to think of hypothetical things, but it also gives me a sense of what the phone is capable of, and helps

to develop trust when you know what to expect"). In fact, for S4, 10 participants chose to ask What If

instead of immediately walking to the café. However, this fascination with What If can also give

users false trust since it obscures potential pitfalls in sensing. Participants who used What If in S4

may not realize how noisy the café may be or that the Place inference was not particularly good

there. P11 did not bother to explore Laκsa's inference in-situ because "technology is supposed to

make your life easier; you shouldn't have to waste time to make sure it works right." Perhaps

providing warnings that sensing can fluctuate due to environmental conditions may help users be

more careful when using What If.

While not explicitly an explanation, Refresh was used to understand what Laκsa was sensing and

inferring in the moment. For S3, P12 and P17 anticipated Laκsa would not sense its location well at

the Library, and refreshed the display to track the location sensing. They learned before arriving at

the Library that Place and Availability were wrong. Similarly, for S4-situ, 7 participants refreshed to

(impatiently) check if their status had been set to Available and/or Place as Café. In fact, because of

this sluggishness, some participants attributed mis-inferences to lag.

9.7 DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS 229

9
.7

 D
ISC

U
SSIO

N
, Im

p
licatio

n
s, an

d
 R

eco
m

m
en

d
atio

n
s

 2
2

9

Occasionally, participants forgot what had happened recently, e.g., for S2, P07 thought he was

talking to the experimenter at the time Laκsa inferred Sound as Talking. Had he played the

recorded audio of that time (Situation), he would have learned that only singing was heard. Using

the played audio, P15 and P16 were able to identify guitar sounds when Sound was finally

recognized correctly as Music. Hence, in combination with History, Situation explanations can help

jog a user’s memory of what was happening, independent of the application’s inference. This helps

them form Situation Justifications for the application behavior. How may we also provide Situation

explanations for contexts other than Sound? For Place, perhaps by showing a photograph at the

location (if one was taken at the same time). For Motion recognition, perhaps by animating an

interpreted diagram of how the phone was moving (derived from accelerometer data).

While our earlier research into intelligibility sought to prioritize providing some explanation types

over others (Chapter 4 [Lim, Dey, and Avrahami, 2009] and Chapter 5 [Lim and Dey, 2009]), our

more recent findings in Chapter 7 [Lim and Dey, 2011a], and these findings suggest instead to

provide a diversity of explanation types will be helpful to support different learning and

troubleshooting strategies users have.

9.7.1.3 DEEPER USAGE OF INTELLIGIBILITY

Our quantitative results indicate that viewing more explanations, especially about deeper contexts

can lead to deeper understanding, and more effective control suggestions for improving the

application behavior. So, to promote user understanding, we need to encourage users to dig for

more explanations, and to dig deeper. Perhaps, if the user starts asking questions, the application

could hypothesize faults, and highlight which factors are probably causing them. These guesses

could come from a knowledge base of typical faults (Section 7.10.4), or be triggered when

inferences Certainty becomes too low (e.g., <80% as suggested in Section 8.12).

9.7.1.4 INTELLIGIBILITY AFFECTED BY FAMILIARITY WITH CONTEXT TYPE

Also observed in Section 8.9 [Lim and Dey, 2011b], our participants indicated less familiarity with

Sound than they did with Place, and this affected the usage and usefulness of intelligibility.

Participants had fewer Control Suggestions for Sound settings than for Place, despite higher View

Counts for explanations about Sound than Place (Table 9.4, Left). This lack of familiarity also

appears to influence their perception of Explanation Usefulness, where it was lower for S2 (Sound

misinferred) than for S3 (Place misinferred), even though participants perceived the application

behavior as equally poor in both scenarios. Perhaps providing easier access to Definitions and

230 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

repeated exposures to the intelligibility features can promote familiarity, and allow users to gain

more understanding of more novel contexts.

9.7.1.5 INTELLIGIBILITY FOR CONTROL

The lack of familiarity with Sound also hindered our participants’ ability to provide Control

suggestion to improve its inference. Only a few suggestions were made: e.g., P10 suggested using

her iTunes music library as a training dataset, and P09 suggested “adjusting the levels for Periods of

Silence for conversation vs. music.” Clearly, we should provide intelligibility to facilitate control (as

recommended in Section 5.7 [Lim and Dey, 2009]), perhaps by just adding a Definitions-style

explanation that describes control mechanisms and some consequences of adjusting them.

9.7.2 CONSTRAINTS FOR INTELLIGIBILITY

While the upper bounds of our participants’ usage of intelligibility may give an indication of

engagement, the lower bound may portend the limits to which some users may be willing to use

intelligibility. Therefore, we derive some time and view constraints for intelligibility. Participants

only spent about 3-10 seconds viewing each explanation, so each explanation page needs to be

correctly and effectively interpreted within that short duration. Perhaps if an explanation cannot be

understood within that duration, it should be split into multiple parts where the user can ask for

more on demand. Furthermore, our quicker participants spared only about 1-3 minutes exploring

explanations for each incident. This may be even shorter without the experimenter demand effect

when users explore intelligibility outside of a user study. Hence, question asking should be

streamlined to facilitate multiple views (~20) within about 2 minutes before the user gives up.

With our scenarios, we have focused on investigating the usage of intelligibility about incidences in-

situ and in the moment (or shortly after), or a future hypothetical situation. However, users may

postpone investigating an incident until they have more time. Under those circumstances, the time

constraints for using intelligibility may not be so tight, but users may need more information to

remind them what happened (e.g., richer Situation and History explanations).

9.7.3 HOW MUCH INTELLIGIBILITY IS "GOOD ENOUGH?"

We have discussed how intelligibility can be beneficial to users by improving their understanding of

application inference and behavior. We have also discussed how to amplify these benefits through

deeper use of intelligibility. However, is this deeper use sufficient or excessive, i.e., what are the

9.8 LIMITATIONS AND FURTHER WORK 231

9
.8

 L
IM

IT
A

T
IO

N
S an

d
 F

u
rth

er W
o

rk
 2

3
1

upper and lower bounds for how much intelligibility to provide? Our results suggest that users may

use intelligibility at least to the depth that was provided in Laκsa, and therefore it is not excessive.

To decide how much intelligibility usage will be sufficient for users (in terms of benefit,

independent of effort required), we can consider a model of how intelligibility influences

understanding, trust, and control (see Figure 9.7). This study covered the path from Usage to

Control (in black), while our previous work in Chapter 4 [Lim, Dey, and Avrahami, 2009], Chapter 5

[Lim and Dey, 2009], and Chapter 8 [Lim and Dey, 2011b] have also explored the link between

Understanding and Trust. In particular, in Section 8.12, we recommend when and how much

intelligibility to provide to help instead of harm user impression (Trust). From Figure 9.6 (Left), we

can see that our participants gave at least one effective Control suggestion on average. If one change

is sufficient to improve the application’s performance, then this should be good enough. However,

this depends on the type of suggestion (see Figure 9.6): changing a Rule is brittle and may not be a

robust solution in the long-run; changing Behavior puts extra strain on the user’s actions and

habits, so they may not favor this repeatedly too; changing Settings is more robust and less tedious,

but may suffer from side-effects (e.g., adjusting weights in a machine learning system). Therefore,

users may need more suggestions to be able to provide satisfactory control, which means that they

should explore explanations of deeper contexts more than of the shallower application context.

Figure 9.7. Model of influence indicating how the usage of Intelligibility may influence a

user’s ability to Control, sense of Trust, and usage of the context-aware application. Lines in

grey were not explicitly explored in this study.

9.8 LIMITATIONS AND FURTHER WORK

While our quasi-field study with an interactive prototype and realistic scenarios can provide insight

into how users use and benefit from intelligibility, there are limitations due to its controlled set-up

and brief duration. Our study covered only a handful of situations where intelligibility is useful, but

Understanding

Control

Application
Behavior

Intelligibility
Usage

Trust

Application
Usage

232 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

we expect more situations and even unanticipated ones as users use Laκsa in their daily lives. Our

study presented a bias by selecting scenarios where participants are more motivated to use

intelligibility to troubleshoot the application behavior. Our purpose was to demonstrate that there

exist situations where users will and do use intelligibility. Under everyday usage, we expect there to

be many situations where users will not have an urgent need to use intelligibility, and may either

forego or postpone its use.

Furthermore, participants had only two hours to familiarize themselves with the UI, and go through

four scenarios. As such, their experience only covered the initial transient usage of intelligibility, as

novices. We expect their usage patterns and knowledge of the application and its inference to

evolve as they use intelligibility over time. Therefore, for future work, we plan to deploy Laκsa in

the field and over a few weeks to overcome the aforementioned limitations. We intend to study how

prolonged use of intelligibility impacts long-term understanding and trust of context-awareness.

In order to focus on the usage of intelligibility in a free-form manner, we provided intelligibility on

demand instead of always on. Moreover, we did not include a baseline control condition where

participants did not see any intelligibility features, or saw a limited set of explanations. This can be

valuable to for evaluating the impact of intelligibility by comparing intelligible and non-intelligible

versions and also help control for personality traits that may have coupled a user’s ability to

understand Laksa2 and her propensity for using intelligibility more. Nevertheless, we refer to our

previous controlled studies in Chapters 4 and 8 that had explored the impact of providing

intelligibility on understanding and trust.

In this study, we have investigated the usage and impact of intelligibility in one context-aware

application. Although this is one data point in a sparse design space, Laksa2 was designed to cover a

range of contexts (Availability, Place, Sound) and inference models (Rules, Decision Tree, Naïve

Bayes), so it spans many features of context-aware applications. This serves to increase the

generality of our results. While Laksa2’s UI presentation was optimized for usability, we architected

Laksa2’s structure to be generalizable depth-wise from a multi-level context hierarchy (layering of

contexts as inputs and outputs) and breadth-wise by spanning explanation question types.

9.9 CONCLUSIONS 233

9
.9

 C
O

N
C

L
U

SIO
N

S 2
3

3

9.9 CONCLUSIONS

We have presented a quasi-field study where we measured how participants naturalistically used

an intelligible context-aware application in scenarios representing real-world, "everyday"

situations. We investigated how that usage affects their understanding of the application behavior.

The application was an iteration over the Laκsa prototype with more streamlined and usable

intelligibility features. We found that viewing more explanations, especially more about deeper

contexts can further improve user understanding of application inference in our experimental

scenarios. We provided potential implications for promoting more effective intelligibility usage,

time constraints within which users are willing to view intelligibility, and discussed how much

intelligibility should be provided to sufficiently improve user understanding of context-aware

applications.

235

10 DISCUSSION & CONCLUSION

This thesis has investigated how to provide intelligibility in context-aware applications and shown

that intelligibility can improve end-user understanding and trust in these adaptive applications. As

we conclude, we summarize the contributions made in this thesis, and discuss avenues for future

work.

10.1 SUMMARY OF CONTRIBUTIONS

We summarize our contributions in terms of the three high-level stages of the thesis approach: (i)

requirements for intelligibility, (ii) support for intelligibility, and (iii) evaluation of intelligibility in

context-aware applications.

10.1.1 TAXONOMY OF EXPLANATION TYPES FOR INTELLIGIBILITY

In Chapter 5, we elicited a range of question types end-users want to ask of context-aware

systems: What, What Else, Certainty, Why, Why Not, What If, How To, Inputs, Outputs, Control, and

Situation. This forms the basis of the taxonomy of explanation types we use to provide intelligibility

in context-aware applications. We believe that providing these explanation types will improve user

satisfaction and acceptance of context-aware applications.

In Chapter 3, we summarized all the explanation types that we have explored from our elicitation

study (Chapter 5), and from subsequent design exercises with higher fidelity intelligible prototypes

(Chapters 7 and 9). These additional explanation types include: When, History, and Description.

10.1.2 IMPLEMENTATION SUPPORT FOR INTELLIGIBILITY

In Chapter 6, we described the Intelligibility Toolkit, which we have developed to make it easier

for developers to provide many explanation types in their context-aware applications. The toolkit

236 CHAPTER 10 | DISCUSSION & CONCLUSION

provides automatic generation of 12 explanation types for at least 10 popular inference models in

context-aware applications. It consists of structural components:

 Queries to encapsulate questions about inferred contexts, and

 Explanation Expressions to represent explanations in data structures

and function components:

 Explainers to generate explanations,

 Reducers to simplify complex explanations,

 Presenters to render explanations for end-users to consume,

 Queriers to present interfaces for end-users to ask questions, and

 Selectors for contextually select queries or reducers to provide.

Explanations can be provided as either rule traces or weights of evidence. The toolkit is extensible to

support new explanation types, model types, reduction heuristics, and presentation formats.

10.1.3 DESIGN RECOMMENDATIONS FOR INTELLIGIBILITY

In Chapter 5, we identified which explanation types to provide to end-users and under which

circumstances (Application Behavior Inappropriateness, Situation Criticality, Application Goal-

Supportiveness, Recommendation Role, Number of Externalities) to best provide them. This is

encoded in a table of design recommendations (see Table 5.6) along with recommended provision

mechanisms (see Table 5.7). These findings help to inform us about context-sensitive intelligibility.

In Chapter 7, through design iteration and a usability study of Laκsa, an intelligible mobile context-

aware application, we developed several design principles for usable intelligibility. We investigated

the use of intelligibility for the mobile contexts of Availability, Place, Motion, and Sound activity.

Our findings emphasize

 Visualizing explanations to allow quick interpretation, but also including textual

explanations to scaffold the graphics.

 Making explanations usable and quickly consumable (by reducing explanation volume or

detail, and aggregating explanations).

 Focusing on providing explanations that facilitate user control, and excluding explanation

details that do not allow users to improve or change the application behavior.

10.1 SUMMARY OF CONTRIBUTIONS 237

1
0

.1
 S

U
M

M
A

R
Y o

f C
o

n
trib

u
tio

n
s

 2
3

7

 Streamlining questioning to reduce the number of options users have when seeking

explanations.

 Using terminology and descriptions more related to the real-world activity than technical

aspects of the application inference.

 Integrating domain knowledge in explanations (e.g., distinguish indoor and outdoor location

sensing via Wi-Fi and GPS respectively).

 Supporting effective problem solving and debugging strategies (so that users can quickly

understand the application issues before giving up).

In Chapter 8, drawing from our evaluation of the helpfulness and harmfulness of intelligibility

across an application certainty threshold of about 80-90%, we provided recommendations on when

and how to provide explanations (see Table 8.9):

 No intelligibility if the overall application certainty and accuracy is low (below the

threshold).

 Provide intelligibility automatically if overall application certainty and accuracy is high

(above the threshold).

 Provide intelligibility on demand to allow users to ask for explanations if the application

behaves inappropriately.

In Chapter 9, we draw some insights into design constraints for providing intelligibility for mobile

context-aware applications, from our evaluation of Laκsa2:

 Enable users to acquire sufficient understanding with no more than 20 explanation views

per incident or session of use and within 2 minutes.

 Enable users to interpret each explanation view in within 3-10 seconds.

10.1.4 EVALUATIONS OF INTELLIGIBILITY

In Chapter 4, we found that providing reasoning trace explanations for context-aware applications

to novice users, and in particular Why and Why Not explanations, can improve users’

understanding and trust in the system. We also found that the complexity of How To and What If

explanations may have impeded their usefulness and efficacy. We therefore sought to improve the

usability and ease of understanding of How To and What If explanations to improve their

usefulness.

238 CHAPTER 10 | DISCUSSION & CONCLUSION

In Chapter 8, we showed that intelligibility can positively or negatively impact user impression,

depending on the application's certainty and behavior appropriateness. Intelligibility is helpful for

applications with high certainty, but it is harmful for applications with low certainty, leading to the

user losing even more trust in its capability. Nevertheless, intelligibility can help users to appreciate

and forgive applications if they behave inappropriately and have low certainty.

In Chapter 9, through a quasi-field experiment with Laκsa2, we showed how usage of intelligibility

affects user understanding of its behavior. We found that, in our experimental scenarios, users were

willing to use intelligibility in Laκsa2, and that viewing more explanations, especially more about

deeper contexts can further improve user understanding of application inference. From our results,

we provided implications for promoting more effective intelligibility usage, time constraints within

which users are willing to view intelligibility, and insights for how much intelligibility should be

provided to sufficiently improve user understanding of context-aware applications.

10.2 LIMITATIONS

With the paucity of intelligible context-aware applications, and in order to conduct controlled user

studies, we conducted most of our user studies with online questionnaires. This format allows us to

collect a large amount of data and user perspectives regarding intelligibility. However, this

approach suffers from a lack of realism where users can experience the intelligibility features over

time and subtle effects and issues become manifested. Nevertheless, we have progressively shifted

our investigation from abstract context-aware applications, to richly described applications, to a

fully functional intelligible prototype.

10.3 ADDITIONAL RESEARCH OPPORTUNITIES

Through this dissertation work, we have begun to orientate our research of intelligibility from the

lab to the real world. This introduces many issues and factors that will interact with intelligibility,

and opportunities to investigate them. We describe a few future research opportunities.

10.3.1 INTELLIGIBILITY FOR CONTROL

Even though end-users of context-aware applications are expected to let the application function

seamlessly without direct user input, users still desire a sense of control (e.g., [Barkhuus and Dey,

10.3 ADDITIONAL RESEARCH OPPORTUNITIES 239

1
0

.3
 A

D
D

IT
IO

N
A

L R
esearch

 O
p

p
o

rtu
n

ities
 2

3
9

2003; Bellotti and Edwards, 2001; Dey and Newberger, 2009]). They will occasionally need to

control and configure the application to override its decision, or improve its performance for future

situations. We hypothesize that, with the increased understanding due to intelligibility, users will

more effectively control the context-aware application. By more effective control, we mean that the

user will know which parameters to adjust to improve the application's inference and behavior, and

that he can also change parameter values such that its inference for the current and, possibly, future

situations will be improved.

With appropriate control interfaces and learning algorithms, we can extend our study on the usage

of intelligibility to measure the impact of user control on application accuracy and performance.

One way to control rule-based context-aware applications is through selected Enactor Parameters

exposed by the Enactor framework [Dey and Newberger, 2009]. However, it is more challenging to

control machine learning-based applications, since manual editing of the learned model may not

guarantee improved performance or accuracy. Early work by Wong et al. [2011] shows promising

results that certain algorithms can improve accuracy with feedback from end-users.

10.3.2 SOCIAL INTELLIGIBILITY

Along with single-user applications, context-awareness is also being used for social applications

(e.g., [Lim and Dey, 2011a; Rosenthal, Dey, and Veloso, 2011]). Since providing intelligible contexts

is useful to users of single-user applications, it is likely to also be useful for users learning about

their social contacts or other relationships. However, intelligibility seeks to illuminate deeper levels

of context information and reasoning. While this can help users to better understand their

counterparts, the owner of this information may be less willing to share the information with

others. Future work can explore the trade-off between the need for intelligible contexts in a social

setting and the desire for privacy which will hinder providing such information. With such results,

we can recommend intelligible context information that users feel comfortable sharing and have

sufficient need to consume.

10.3.3 FIELD STUDY OF INTELLIGIBILITY

An important next step to validate our findings of the use and usefulness of intelligibility is to

conduct a field study of an intelligible application. This will allow us to investigate how real-world

concerns affect the use and impact of intelligibility, and how these measures change over time. By

allowing users to freely use the application in their everyday lives, we also minimize any

240 CHAPTER 10 | DISCUSSION & CONCLUSION

experimenter demand effects which may bias users to use intelligibility. A longitudinal study will

also reduce the novelty effect of the early usage of intelligibility. We can also explore whether

intelligibility remains useful after users have learned and become familiar with how the application

inference works, and observe how the need for intelligibility changes over time.

As an early field exploration, we have conducted a pilot study in 2009 of IM Autostatus over 3-4

weeks [Lim and Dey, 2012a]. IM Autostatus is an intelligible instant messaging plugin that predicts

when a buddy will respond to the user’s message. We compared intelligible/non-intelligible

versions with high/low accuracies (~60/80%). We found that users receiving intelligibility agree

more with the application predictions, and had more detailed and correct mental models of the

application behavior. We also determined that users used intelligibility (on demand), but this

declined after a few days, especially for versions with low accuracy.

With further engineering of the Laκsa2 prototype, we can deploy the application to the app

marketplace. This will allow us to explore intelligibility with a large pool of users over a longer

period of time.

241

243

BIBLIOGRAPHY

Aamodt, A. (2004). Knowledge-intensive case-based reasoning in CREEK. In Proceedings of the 7th

European Conference on Advances in case-based reasoning (ECCBR 2004), 1-15.

Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R. and Pinkerton, M. (1997). Cyberguide: a

mobile context-aware tour guide. Wireless Networks 3(5), 421-433.

Abowd, G.D., Mynatt, E.D., and Rodden, T. (2002). The Human Experience. IEEE Pervasive Computing

1(1), 48-57.

Ahmed, S. (2011). Truth Table Solver. http://truthtablesolve.sourceforge.net/. Retrieved 1 March

2012.

Albinali, F., Intille, S., Haskell, W., and Rosenberger, M. (2010). Using wearable activity type

detection to improve physical activity energy expenditure estimation. In Proceedings of the

12th ACM international conference on Ubiquitous computing (Ubicomp '10). ACM, New York,

NY, USA, 311-320.

Amazon Mechanical Turk. http://www.mturk.com. Retrieved 26 Jan 2012.

Ambient Devices. http://www.ambientdevices.com/products/what-is-ambient. Retrieved 3 April

2012.

Amft, O. and Trӧster, G. (2008). Recognition of dietary activity events using on-body sensors.

Artificial Intelligence in Medicine, 42(2), 121-136.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive Tutors: Lessons

Learned. Journal of the Learning Sciences, 4(2), 167-207.

Andrews, R., Diederich, J. and Tickle, A. (1995). A Survey and Critique of Techniques for Extracting

Rules from Trained Artificial Neural Networks. Knowledge Based Systems, 8, 373–389.

http://truthtablesolve.sourceforge.net/
http://www.mturk.com/
http://www.ambientdevices.com/products/what-is-ambient

244 BIBLIOGRAPHY

Antifakos, S., Schwaninger, A, and Schiele, B. (2004). Evaluating the Effects of Displaying

Uncertainty in Context-Aware Applications. In Proceedings of the 6th international

Conference on Ubiquitous Computing (Tokyo, Japan, September 11 - 14, 2004). Ubicomp '04.

ACM, New York, NY, 54-69.

Antifakos, S. Kern, N., Schiele, B. and Schwaninger, A. (2005). Towards improving trust in context-

aware systems by displaying system confidence. In Proceedings of the 7th international

conference on Human computer interaction with mobile devices & services (MobileHCI '05).

ACM, New York, NY, USA, 9-14.

Assad, M., Carmichael, D.J., Kay, J. and Kummerfeld, B. (2007). PersonisAD: Distributed, Active,

Scrutable Model Framework for Context-Aware Services. In Proceedings of the 5th

international conference on Pervasive computing (Pervasive'07), Anthony LaMarca, Marc

Langheinrich, and Khai N. Truong (Eds.). Springer-Verlag, Berlin, Heidelberg, 55-72.

Avrahami, D. and Hudson, S.E. (2006). Responsiveness in Instant Messaging: Predictive Models

Supporting Inter-Personal Communication. In Proceedings of the SIGCHI conference on

Human Factors in computing systems (CHI '06), Rebecca Grinter, Thomas Rodden, Paul Aoki,

Ed Cutrell, Robin Jeffries, and Gary Olson (Eds.). ACM, New York, NY, USA, 731-740.

Bao, L. and Intille, S.S. (2004). Activity recognition from user-annotated acceleration data. In

Proceedings of the Second International Conference on Pervasive Computing

(Pervasive'04), 1-17.

Bardram, J. E. (2005). The Java Context Awareness Framework (JCAF) – A Service Infrastructure

and Programming Framework for Context-Aware Applications. In Proceedings of the 3th

international conference on Pervasive computing (Pervasive'05), 98-115.

Barkhuus, L. and Dey, A.K. (2003a). Location-based services for mobile telephony: a study of users’

privacy concerns. In Proceedings of Interact 2003, 9th IFIP TC13 International Conference on

Human-Computer Interaction. Zurich, Switzerland: ACM Press, 709-712.

Barkhuus, L. and Dey, A.K. (2003b). Is context-aware computing taking control away from the user?

Three levels of interactivity examined. In Proceedings of the 5th international Conference on

Ubiquitous Computing (Ubicomp '03). ACM, New York, NY, 149–156.

BIBLIOGRAPHY 245

Barua, D., Kay, J., Kummerfeld, B. (2011). Personis-LF: user modelling framework with user

controlled forgetting for pervasive lifelong personalisation. In 1st International Workshop

on Intelligibility and Control in Pervasive Computing at Pervasive '11.

Bicocchi, N., Mamei, M., and Zambonelli, F. (2010). Detecting activities from body-worn

accelerometers via instance-based algorithms. Pervasive Mobile Computing, 6(4), 482-495.

Bellotti, V. and Edwards, W.K. (2001). Intelligibility and Accountability: Human Considerations

in Context-Aware Systems. Human-Computer Interaction, 16(2-4): 193-212.

Bellotti, V., Back, M., Edwards, W.K., Grinter, R.E., Henderson, A., and Lopes, C. (2002). Making sense

of sensing: Five questions for designers and researchers. In Proceedings of the 20th

international Conference on Human Factors in Computing Systems (CHI '02). ACM, New York,

NY, 415-422.

Bicocchi, N., Mamei, M., and Zambonelli, F. (2010). Detecting activities from body-worn

accelerometers via instance-based algorithms. Pervasive Mobile Computing, 6(4), 482-495.

Blair, C.E., Jeroslow, R.G., and Lowe, J.K. (1986). Some results and experiments in programming

techniques for propositional logic. In Journal of Computers and Operations Research, 13, 5

(May 1986), 633-645.

Borriello, G., Brunette, W., Hall, M., Hartung, C., and Tangney, C. (2004). Reminding About Tagged

Objects Using Passive RFIDs. In Proceedings of the 6th international conference on Ubiquitous

computing (UbiComp '04), 36-53.

Breiman, L. (1996). Bagging predictors. Macine. Learning, 24, 2 (August 1996), 123-140.

Breiman, L. (2001). Random Forests. Macine. Learning, 45, 1 (October 2001), 5-32.

Brunk, C., Kelly, J., and Kohavi, R. (1997). MineSet: an integrated system for data mining. In

Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining.

AAAI Press, 135-138.

Bucur, D. (2011). Intelligible TinyOS sensor systems: explanations for embedded software. In

Proceedings of the 7th international and interdisciplinary conference on Modeling and using

context (CONTEXT'11), Michael Beigl, Hedda R. Schmidtke, Henning Christiansen, Thomas R.

246 BIBLIOGRAPHY

Roth-Berghofer, and Anders Kofod-Petersen (Eds.). Springer-Verlag, Berlin, Heidelberg, 54-

66.

Bulling, A., Ward, J. A., Gellersen, H., and Tröster, G. (2008). Robust Recognition of Reading Activity

in Transit Using Wearable Electrooculography. In Proceedings of the 6th International

Conference on Pervasive Computing (Pervasive '08), Jadwiga Indulska, Donald J. Patterson,

Tom Rodden, and Max Ott (Eds.). Springer-Verlag, Berlin, Heidelberg, 19-37.

Bulling, A., Ward, J.A., Gellersen, H., and Trӧster, G. (2009). Eye movement analysis for activity

recognition. In Proceedings of the 11th international conference on Ubiquitous computing

(Ubicomp '09). ACM, New York, NY, USA, 41-50.

Bulling, A. and Roggen, D. (2011). Recognition of visual memory recall processes using eye

movement analysis. In Proceedings of the 13th international conference on Ubiquitous

computing (UbiComp '11). ACM, New York, NY, USA, 455-464.

Byrne, R.M.J. and Johnson-Laird, P. N. (1992). The Spontaneous Use of Propositional Connectives. In

Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology,

1464-0740, 45 (1), 89–110.

Cassens, J., and Kofod-Petersen, A. (2007). Explanations and Case-Based Reasoning in Ambient

Intelligent Systems. In Proceedings of the 2nd International Workshop on Case Based

Reasoning and Context-Awareness, Co-located with the 7th International Conference on Case

Based Reasoning (ICCBR), vol. 271.

Cassens, J. (2008). Explanation Awareness and Ambient Intelligence as Social Technologies. Thesis

for the degree doctor scientiarum, Norwegian University of Science and Technology,

Trondheim, Norway, May 2008.

Chang, K., Hightower, J., and Kveton, B. (2009). Inferring Identity Using Accelerometers in

Television Remote Controls. In Proceedings of the 7th International Conference on Pervasive

Computing (Pervasive '09), Hideyuki Tokuda, Michael Beigl, Adrian Friday, A. J. Brush, and

Yoshito Tobe (Eds.). Springer-Verlag, Berlin, Heidelberg, 151-167.

Chang, K., Chen, M. Y., and Canny, J. (2007). Tracking Free-Weight Exercises. In Proceedings of the

9th international conference on Ubiquitous computing (UbiComp '07), John Krumm, Gregory

BIBLIOGRAPHY 247

D. Abowd, Aruna Seneviratne, and Thomas Strang (Eds.). Springer-Verlag, Berlin,

Heidelberg, 19-37.

Cheverst, K. Davies, N. Mitchell, K., Friday, A. and Efstratiou, C. (2000). Developing a context-aware

electronic tourist guide: some issues and experiences. In Proceedings of the 18th SIGCHI

conference on Human factors in computing systems (CHI '00). ACM, New York, NY, USA, 17-

24.

Cheverst, K., Byun, H.E., Fitton, D., Sas, C., Kray, C., and Villar, N. (2005). Exploring issues of user

model transparency and proactive behavior in an office environment control system. User

Modeling and User-Adapted Interaction 15(3-4), 235-273.

Circular Error Probable (CEP), Air Force Operational Test and Evaluation Center Technical. Paper 6,

Version 2, July 1987, p. 1.

Clancey, W. J. (1983). The Epistemology of a Rule-based Expert System: A Framework for

Explanation. Artificial Intelligence, 20(3), pp. 215-251.

Chalmers, M. and MacColl, I. (2003). Seamful and seamless design in ubiquitous computing. In

Workshop: At the Crossroads: The Interaction of HCI and Systems Issues, Ubicomp '03.

Cohn, G., Gupta, S., Froehlich, J., Larson, E., and Patel, S.N. (2010). GasSense: appliance-level, single-

point sensing of gas activity in the home. In Proceedings of the 8th international conference

on Pervasive Computing (Pervasive'10), Patrik Floréen, Antonio Krüger, and Mirjana

Spasojevic (Eds.). Springer-Verlag, Berlin, Heidelberg, 265-282.

Cohn, G., Morris, D., Patel, S.N., and Tan, D.S. (2011). Your noise is my command: sensing gestures

using the body as an antenna. In Proceedings of the 2011 annual conference on Human

factors in computing systems (CHI '11). ACM, New York, NY, USA, 791-800.

Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P. LaMarca,

A., LeGrand, L., Libby, R., Smith, I., and Landay, J.A. (2008). Activity sensing in the wild: a

field trial of ubifit garden. In Proceedings of the twenty-sixth annual SIGCHI conference on

Human factors in computing systems (CHI '08). ACM, New York, NY, USA, 1797-1806.

248 BIBLIOGRAPHY

Conway, M., Audia, S., Burnette, T., Cosgrove, D., and Christiansen, K. (2000). Alice: lessons learned

from building a 3D system for novices. In Proceedings of the SIGCHI conference on Human

factors in computing systems (CHI '00). ACM, New York, NY, USA, 486-493.

Crama, Y. and Hammer, P.L. (2011). Boolean Functions: Theory, Algorithms, and Applications.

Cambridge University Press, New York, NY, USA.

Cramer, H., Evers, V., van Someren, M., Ramlal, S., Rutledge, L., Stash, N., Aroyo, L., and Wielinga, B.

(2008). The effects of transparency on trust and acceptance in interaction with a content-

based art recommender. User Modeling and User-Adapted Interaction, 18 (5): 455–496.

Cramer, H., Evers, V., van Someren, M., Ramlal, S., Rutledge, L., Stash, N., Aroyo, L., and Wielinga, B.

(2008). The effects of transparency on perceived and actual competence of a content-based

recommender. In Proceedings of the Semantic Web User Interaction Workshop at CHI’08,

Florence, Italy.

Crittenden, J. and Evans, Parker. (2008). Speaker Recognition. ECE 576 Final Project, Cornell

University.

https://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/f2008/pae26_jsc59/pae26

_jsc59/. Retrieved 1 May 2012.

Davidoff, S., Ziebart, B.D., Zimmerman, J., and Dey, A.K. (2011). Learning patterns of pick-ups and

drop-offs to support busy family coordination. In Proceedings of the 2011 annual conference

on Human factors in computing systems (CHI '11). ACM, New York, NY, USA, 1175-1184.

Damer, T.E. (2009). Attacking Faulty Reasoning: A Practical Guide to Fallacy-Free Arguments (6th.

ed.). Belmont, CA. Wadsworth Cengage Learning.

Davis, R., Buchanan, B., and Shortliffe, E. (1977). Production rules as a representation for a

knowledge-based consultation program. Artificial Intelligence, 8(1): 15–45.

Dearman, D., Varshavsky, A., Lara, E.D., and Truong, K.N. (2007). An exploration of location error

estimation. In Proceedings of the 9th international conference on Ubiquitous computing

(UbiComp '07), John Krumm, Gregory D. Abowd, Aruna Seneviratne, and Thomas Strang

(Eds.). Springer-Verlag, Berlin, Heidelberg, 181-198.

https://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/f2008/pae26_jsc59/pae26_jsc59/
https://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/f2008/pae26_jsc59/pae26_jsc59/

BIBLIOGRAPHY 249

Dey, A.K. (2000). Providing Architectural Support for Building Context-Aware Applications, Ph.D.

thesis, December 2000, College of Computing, Georgia Institute of Technology.

Dey, A.K. and Abowd, G.D. (2000). CybreMinder: A Context-Aware System for Supporting

Reminders. In Proceedings of the 2nd international symposium on Handheld and Ubiquitous

Computing (HUC '00), Peter J. Thomas and Hans-Werner Gellersen (Eds.). Springer-Verlag,

London, UK, 172-186.

Dey, A.K., Abowd, G.D., and Salber, D. (2001). A conceptual framework and a toolkit for supporting

the rapid prototyping of context-aware applications. Human-Computer Interaction, 16(2–4):

97–166.

Dey, A. K. and de Guzman, E. (2006). From awareness to connectedness: the design and deployment

of presence displays. In Proceedings of the SIGCHI conference on Human Factors in

computing systems (CHI '06), Rebecca Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin

Jeffries, and Gary Olson (Eds.). ACM, New York, NY, USA, 899-908.

Dey A.K., Mankoff, J., Abowd, G., and Carter, S. (2002). Distributed mediation of ambiguous context

in aware environments. In Proceedings of the 15th annual ACM symposium on User interface

software and technology (UIST '02). ACM, New York, NY, USA, 121-130.

Dey, A.K. and Newberger, A. (2009). Support for context-aware intelligibility and control. In

Proceedings of the 27th international conference on Human factors in computing systems (CHI

'09). ACM, New York, NY, USA, 859-868.

Dey, A.K., Sohn, T., Streng, S., and Kodama, J (2006). iCAP: Interactive Prototyping of Context-Aware

Applications. In Proceedings of the 4th international conference on Pervasive Computing

(PERVASIVE'06), Kenneth P. Fishkin, Bernt Schiele, Paddy Nixon, and Aaron Quigley (Eds.).

Springer-Verlag, Berlin, Heidelberg, 254-271.

Dourish, P. (2004). What we talk about when we talk about context. Personal Ubiquitous Computing,

8(1), 19-30.

Dourish, P., Adler, A. and Smith, B.C. (1996). Organising User Interfaces Around Reflective Accounts.

Reflection '96, 235-244.

250 BIBLIOGRAPHY

Dzindolet, M., Peterson, S., Pomranky, S. Pierce, L., and Beck, H. (2003). The role of trust in

automation reliance. International Journal of Human-Computer Studies, 58(6): 697-718.

Edwards, W.K., Newman, M.W., and Poole, E.S. (2010). The infrastructure problem in HCI. In

Proceedings of the 28th international conference on Human factors in computing systems (CHI

'10). ACM, New York, NY, USA, 423-432.

Everett, A. M. (1994). An Empirical Investigation of the Effect of Variations in Expert System

Explanation Presentation on Users' Acquisition of Expertise and Perceptions of the System.

Unpublished Doctoral Dissertation, University of Nebraska.

Fatcow "Farm-Fresh Web Icons". http://www.fatcow.com/free-icons. Retrieved 1 February 2012.

Fogarty, J., Hudson, S.E., Atkeson, C.G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J.C., and Yang, J.

(2005). Predicting human interruptibility with sensors. ACM Transactions on Computer-

Human Interaction 12(1), 119-146.

Fogarty, J. and Hudson, S. E. (2007). Toolkit support for developing and deploying sensor-based

statistical models of human situations. In Proceedings of the SIGCHI conference on Human

factors in computing systems (CHI '07). ACM, New York, NY, USA, 135-144.

Fong, J. (2010). Intelligibility and user control of context-aware application behaviours. In

Proceedings of the 7th International Conference on Pervasive Services (ICPS2010), 174-179.

Fong, J., Indulska, J., Robinson, R. (2011). A Preference Modelling Approach to Support Intelligibility

in Pervasive Applications. In Proceedings of the 2011 IEEE International Conference on

Pervasive Computing and Communications Workshops (PERCOM Workshops), 8th IEEE

Workshop on Context Modeling and Reasoning (CoMoRea 2011), 409-414.

Franois, J.M. (2010). Jahmm: An implementation of Hidden Markov Models in Java.

http://code.google.com/p/jahmm/. Retrieved 9 Mar 2010.

Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm. In Proceedings of

the International Conference on Machine Learning, 148-156.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical view of

boosting. The Annals of Statistics, 28(2), 337-374.

http://www.fatcow.com/free-icons
http://code.google.com/p/jahmm/

BIBLIOGRAPHY 251

Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., and Landay, J. A. (2009).

UbiGreen: investigating a mobile tool for tracking and supporting green transportation

habits. In Proceedings of the 27th international conference on Human factors in computing

systems (CHI '09). ACM, New York, NY, USA, 1043-1052.

Froehlich, J.E., Larson, E., Campbell, T., Haggerty, C., Fogarty, J., and Patel, S.N. (2009). HydroSense:

infrastructure-mediated single-point sensing of whole-home water activity. In Proceedings

of the 11th international conference on Ubiquitous computing (Ubicomp '09). ACM, New York,

NY, USA, 235-244.

Fukui, R., Watanabe, M., Gyota, T., Shimosaka, M., and Sato, T. (2011). Hand shape classification with

a wrist contour sensor: development of a prototype device. In Proceedings of the 13th

international conference on Ubiquitous computing (UbiComp '11). ACM, New York, NY, USA,

311-314.

Gibson, J.J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.

Glass, A., McGuinness, D., and Wolverton, M. (2008). Toward establishing trust in adaptive agents.

Proc. IUI'08. 227-236.

Google Web Toolkit. http://code.google.com/webtoolkit/. Retrieved 16 September 2008.

Graesser, A.C., Person, N., Huber, J. (1992). Mechanisms that generate questions. In: Lauer, T.W.,

Peacock, E., Graesser, A.C. (Eds.), Questions and Information Systems. Lawrence

Erlbaum, Hillsdale, NJ, pp. 167–187.

Graesser, A. C., Langston, M. C. and Baggett, W. B. (1993). Exploring information about concepts by

asking questions. In G. V. Nakamura, R. M. Taraban and D. Medin (Eds.), The psychology of

learning and motivation, Vol. 29, Categorization by humans and machines. Orlando, FL.

Academic Press, 411-436.

Graesser, A.C. and McMahen, C.L. (1993). Anomalous information triggers questions when adults

solve quantitative problems and comprehend stories. Journal of Educational Psychology, 85,

136-151.

Graesser, A., Baggett, W., and Williams, K. (1996). Question-driven explanatory reasoning. Applied

Cognitive Psychology, 10, 17-S32.

http://code.google.com/webtoolkit/

252 BIBLIOGRAPHY

Greenberg, S. (2001). Context as a dynamic construct. Human-Computer Interaction 16(2)

(December 2001), 257-268.

Greenfield, A. (2006). Everyware: The Dawning Age of Ubiquitous Computing. Peachpit Press,

Berkeley, CA, USA.

Gregor, S. and Benbasat, I. (1999). Explanations From Intelligent Systems: Theoretical Foundations

and Implications for Practice. MIS Quarterly 23(4): 497–530.

Gu, T., Pung, H.K., and Zhang, D.Q. (2005). A service-oriented middleware for building context-

aware services. In Journal of Network and Computer Applications, 28(1), 1-18.

Gupta, S., Reynolds, M.S., and Patel, S.N. (2010). ElectriSense: single-point sensing using EMI for

electrical event detection and classification in the home. In Proceedings of the 12th ACM

international conference on Ubiquitous computing (Ubicomp '10). ACM, New York, NY, USA,

139-148.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. (2009). The WEKA Data

Mining Software: An Update. SIGKDD Explorations 09, 11(1), 10-18.

Hardian, B. (2006). Middleware support for transparency and user control in context-aware

systems. In Proceedings of the 3rd international Middleware doctoral symposium (MDS '06).

ACM, New York, NY, USA, 4-10.

Hardian, B., Indulska, J. and Henricksen, K. (2008). Exposing Contextual Information for Balancing

Software Autonomy and User Control in Context-Aware Systems. In Proceedings of the

Workshop on Context-Aware Pervasive Communities: Infrastructures, Services and

Applications, affiliated with the Pervasive'2008 conference, Sydney, May 2008.

Hastie, T. and Tibshirani, R. (1998). Classification by pairwise coupling. In Proceedings of the 1997

conference on Advances in neural information processing systems 10 (NIPS '97), Michael I.

Jordan, Michael J. Kearns, and Sara A. Solla (Eds.). MIT Press, Cambridge, MA, USA, 507-513.

Haynes, S.R., Cohen, M.A., and Ritter, F.E. (2009). Designs for explaining intelligent agents.

International Journal of Human-Computer Studies, Volume 67, Issue 1, Pages 90-110.

BIBLIOGRAPHY 253

Hempel, C.G. (1965). Aspects of Scientific Explanation, Aspects of Scientific Explanation and

Other Essays. Free Press, New York.

Henricksen K., and Indulska, J. (2006). Developing context-aware pervasive computing applications:

Models and approach. Pervasive and Mobile Computing, 2(1), 37-64.

Herlocker, J., Konstan, J., and Riedl, J. (2000). Explaining collaborative filtering recommendations. In

Proceedings of the 2000 ACM conference on Computer supported cooperative work (CSCW

'00). ACM, New York, NY, USA, 241-250..

Hilbert, D.M. and Redmiles, D.F. (2000). Extracting usability information from user interface events.

ACM Computing Survey, 32(4), 384-421.

Höök, K., Karlgren, J., Waern, A., Dahlbck, A., Jansson, C., Karlgren, K., and Lemaire, B. (1996). A glass

box approach to adaptive hypermedia. User Modeling and User-Adapted Interaction, 6(2-3),

157–184.

Höök, K. (2000). Steps to take before intelligent interfaces become real. Interacting with Computers,

12(4), 409–426.

Hudson, S.E. (1997). Principles of User Interface Software: Toolkits. Class notes. Georgia Institute of

Technology, Atlanta, GA. March 1997.

Iba, W. and Langley, P. (1992). Induction of One-Level Decision Trees. In Proceedings of the Ninth

International Workshop on Machine Learning (ML '92), Derek H. Sleeman and Peter Edwards

(Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 233-240.

Jackson, M. (2000). Problem Frames: Analyzing and Structuring Software Development Problems.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Johnson, H. and Johnson, P. (1993). Explanation facilities and interactive systems. In Proceedings of

the 1st international conference on Intelligent user interfaces (IUI '93), Wayne D. Gray,

William E. Hefley, and Dianne Murray (Eds.). ACM, New York, NY, USA, 159-166.

Kim, T. and Hinds, P.J. (2006). Who should I blame? Effects of autonomy and transparency on

attributions in HRI. ROMAN 06, 80-85.

254 BIBLIOGRAPHY

Kittur, A., Chi, E.H., and Suh, B. (2008). Crowdsourcing user studies with Mechanical Turk. In

Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing

systems (CHI '08). ACM, New York, NY, USA, 453-456.

Kern, N. and Schiele, B. (2006). Towards Personalized Mobile Interruptibility Estimation. In

Proceedings of the Second international conference on Location- and Context-Awareness

(LoCA'06), Mike Hazas, John Krumm, and Thomas Strang (Eds.). Springer-Verlag, Berlin,

Heidelberg, 134-150.

Ko, A.J. and Myers, B.A. (2003). Development and evaluation of a model of programming errors. In

IEEE Symposia on Human-Centric Computing Languages and Environments 2003, Auckland,

New Zealand, 7-14.

Ko, A.J. and Myers, B.A. (2004). Designing the WhyLine: A debugging interface for asking questions

about program failures. Proceedings of the 22th international conference on Human factors in

computing systems (CHI '04). ACM, New York, NY, USA, 151-158.

Ko, A. J. and Myers, B. A. (2009). Finding causes of program output with the Java Whyline. In

Proceedings of the 27th international conference on Human factors in computing systems (CHI

'09). ACM, New York, NY, USA, 1569-1578.

Kofod-Petersen, A. and Aamodt, A. (2003). Case-based Situation Assessment in a Mobile Context-

Aware Systems. In Workshop on Artificial Intelligence for Mobile Systems (AIMS 2003).

Kofod-Petersen, A. and Mikalsen, M. (2005). Context: Representation and reasoning – Representing

and reasoning about context in a mobile environment. Revue d’Intelligence Artificielle, 19,

479–498.

Kofod-Petersen, A., Cassens, J., and Aamodt, A. (2008). Explanatory Capabilities in the CREEK

Knowledge-Intensive Case-Based Reasoner. In Proceeding of the 2008 conference on Tenth

Scandinavian Conference on Artificial Intelligence: SCAI 2008, Anders Holst, Per Kreuger,

and Peter Funk (Eds.). IOS Press, Amsterdam, The Netherlands, 28-35.

Kulesza T., Wong, W.K., Stumpf, S., Perona, S., White, R., Burnett, M.M., Oberst, I., and Ko. A.J. (2009).

Fixing the Program My Computer Learned: Barriers for End Users, Challenges for the

BIBLIOGRAPHY 255

Machine. In Proceedings of the 14th international conference on Intelligent user interfaces

(IUI '09). ACM, New York, NY, USA, 187-196.

Kulesza, T., Burnett, M., Stumpf, S., Wong, W.K., Das, S., Groce, A., Shinsel, A., Bice, F., and McIntosh,

K. (2011). Where are my intelligent assistant's mistakes? a systematic testing approach. In

Proceedings of the Third international conference on End-user development (IS-EUD'11),

Maria Francesca Costabile, Yvonne Dittrich, Gerhard Fischer, and Antonio Piccinno (Eds.).

Springer-Verlag, Berlin, Heidelberg, 171-186.

Kulesza, T., Stumpf, S., Burnett, M., Kwan, I. (2012). Tell Me More? The Effects of Mental Model

Soundness on Personalizing an Intelligent Agent. In Proceedings of the 30th international

Conference on Human Factors in Computing Systems (CHI '12).. To Appear.

Lacave, C. and Díez, F.J. (2002). A review of explanation methods for Bayesian networks. Knowledge

Engineering Review 17, 2 (June 2002), 107-127.

Lacave, C. and Díez, F.J. (2004). A review of explanation methods for heuristic expert systems.

Knowledge Engineering Review 19, 2 (June 2004), 133-146.

Lane, N.D., Lu, H., Eisenman, S.B., and Campbell, A.T. (2009). Cooperative Techniques Supporting

Sensor-Based People-Centric Inferencing. In Proceedings of the 6th International Conference

on Pervasive Computing (Pervasive '08), Jadwiga Indulska, Donald J. Patterson, Tom Rodden,

and Max Ott (Eds.). Springer-Verlag, Berlin, Heidelberg, 75-92.

Lane, N., Lymberopoulos, D., Zhao, F., and Campbell, A.T. (2010). Hapori: context-based local search

for mobile phones using community behavioral modeling and similarity. In Proceedings of

the 12th ACM international conference on Ubiquitous computing (Ubicomp '10). ACM, New

York, NY, USA, 109-118.

Larson, E.C., Lee, T.J., Liu, S., Rosenfeld, M., and Patel, S.N. (2011). Accurate and privacy preserving

cough sensing using a low-cost microphone. In Proceedings of the 13th international

conference on Ubiquitous computing (UbiComp '11). ACM, New York, NY, USA, 375-384.

Lee, J.D. and See, K.A. (2004). Trust in automation: designing for appropriate reliance. Human

Factors, 42(1), 50-80.

256 BIBLIOGRAPHY

Lee, M.L. and Dey, A.K. 2010. Embedded Assessment of Aging Adults: A Concept Validation. In

Proceedings of PervasiveHealth 2010.

Lee, M.L. and Dey, A.K. (2011). Reflecting on pills and phone use: supporting awareness of

functional abilities for older adults. In Proceedings of the 2011 annual conference on Human

factors in computing systems (CHI '11). ACM, New York, NY, USA, 2095-2104.

Lehnert, W.G. (1978). The process of question-answering. Hillsdale, NJ: Erlbaum.

Lemelson, H., King, T., and Effelsberg, W. (2008). A Study on User Acceptance of Error Visualization

Techniques. In Proceedings of the 5th Annual International Conference on Mobile and

Ubiquitous Systems: Computing, Networking, and Services (Mobiquitous '08). ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels,

Belgium, Article 53, 6 pages.

Lester, J., Choudhury, T., and Borriello, G. (2006). A Practical Approach to Recognizing Physical

Activities. In Proceedings of the 4th international conference on Pervasive Computing

(PERVASIVE'06), Kenneth P. Fishkin, Bernt Schiele, Paddy Nixon, and Aaron Quigley (Eds.).

Springer-Verlag, Berlin, Heidelberg, 1-16.

Li, Y., Li, X., Ratcliffe, M., Liu, L., Qi, Y., and Liu, Q. (2011). A real-time EEG-based BCI system for

attention recognition in ubiquitous environment. In Proceedings of 2011 international

workshop on Ubiquitous affective awareness and intelligent interaction (UAAII '11). ACM,

New York, NY, USA, 33-40.

Lim, B.Y., Dey, A.K., and Avrahami, D. (2009). Why and Why Not Explanations Improve the

Intelligibility of Context-Aware Intelligent Systems. In Proceedings of the 27th international

Conference on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09, 2009).

CHI '09. ACM, New York, NY, 2119-2128.

Lim, B.Y. and Dey, A.K. (2009). Assessing Demand for Intelligibility in Context-Aware Applications.

In Proceedings of the 11th international Conference on Ubiquitous Computing (Orlando,

Florida, USA, September 30 - October 03, 2009). Ubicomp '09. ACM, New York, NY, 195-204.

BIBLIOGRAPHY 257

Lim, B.Y. and Dey, A.K. (2010). Toolkit to Support Intelligibility in Context-Aware Applications. In

Proceedings of the 12th ACM international Conference on Ubiquitous Computing (Copenhagen,

Denmark, September 26 - 29, 2010). Ubicomp '10. ACM, New York, NY, 13-22.

Lim, B.Y., Brdiczka, O., and Bellotti, V. (2010). Show me a good time: using content to provide

activity awareness to collaborators with activityspotter. In Proceedings of the 16th ACM

international conference on Supporting group work (GROUP '10). ACM, New York, NY, USA,

263-272.

Lim, B.Y. and Dey, A.K. (2011). Design of an Intelligible Mobile Context-Aware Application. In

Proceedings of the 13th International Conference on Human Computer Interaction with

Mobile Devices and Services (MobileHCI '11). ACM, New York, NY, USA, 157-166.

Lim, B.Y. and Dey, A.K. (2011). Investigating Intelligibility for Uncertain Context-Aware

Applications. In Proceedings of the 13th international conference on Ubiquitous computing

(UbiComp '11). ACM, New York, NY, USA, 415-424.

Lim, B. Y., Dey, A. K. (2012). Field Evaluation of an Intelligible Context-Aware Application. CMU-HCII

Technical Report.

Lu, H., Pan, W., Lane, N.D., Choudhury, T., and Campbell, A.T.. (2009). SoundSense: scalable sound

sensing for people-centric applications on mobile phones. In Proceedings of the 7th

international conference on Mobile systems, applications, and services (MobiSys '09). ACM,

New York, NY, USA, 165-178.

Ma, T., Kim, Y.D., Ma, Q., Tang, M., Zhou, W. (2005). Context-aware implementation based on cbr for

smart home. In Proceedings of Wireless And Mobile Computing, Networking And

Communications (WiMob 2005). IEEE, IEEE Computer Society, 112–115.

Madan, A., Cebrian, M., Lazer, D., and Pentland, A. (2010). Social sensing for epidemiological

behavior change. In Proceedings of the 12th ACM international conference on Ubiquitous

computing (Ubicomp '10). ACM, New York, NY, USA, 291-300.

Madigan, D., Mosurski, K., and Almond, R. (1996). Explanation in Belief Networks. In Journal of

Computational and Graphical Statistics, 6(2), pp. 160-181.

258 BIBLIOGRAPHY

Mankoff, J., Dey, A.K., Hsieh, G., Kientz, J., Lederer, S., and Ames, M. (2003). Heuristic evaluation of

ambient displays. In Proceedings of the SIGCHI conference on Human factors in computing

systems (CHI '03). ACM, New York, NY, USA, 169-176.

McCreath, E., Kay, J., Crawford, E. (2006). IEMS-an approach that combines hand crafted rules with

learnt instance based rules. Australian Journal of Intelligent Information Processing Systems,

9(1), 49-63.

McGuinness, D. L., Glass, A., Wolverton, M., and Pinheiro da Silva, P. (2007). A Categorization of

Explanation Questions for Task Processing Systems. In AAAI Workshop on Explanation-

Aware Computing (ExaCt-07).

McSherry, D. (2005). Explanation in Recommender Systems. Artificial Intelligence. 24(2), 179-197.

Metaxas, G., Metin, B., Schneider, J., Markopoulos, P., De Ruyter, B. (2007). Daily Activities Diarist:

Supporting Aging in Place with Semantically Enriched Narratives. In Proceedings of

INTERACT 2007, Heidelberg, Germany, Springer Verlag, 390-403.

Metaxas, G. (2010). End-User Programming of Awareness Systems. Ph.D. Thesis. December 2010.

User System Interaction Programme, Einhoven University of Technology.

Milewski, A.E. and Smith, T.M. (2000). Providing Presence Cues to Telephone Users. In Proceedings

of the 2000 ACM conference on Computer supported cooperative work (CSCW '00). ACM, New

York, NY, USA, 89-96.

Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.H., Zheng, X., and

Campbell, A.T. (2008). Sensing meets mobile social networks: the design, implementation

and evaluation of the CenceMe application. In Proceedings of the 6th ACM conference on

Embedded network sensor systems (SenSys '08). ACM, New York, NY, USA, 337-350.

Motorola Smart Actions. http://www.motorola.com/blog/2011/11/17/motorola-smart-actions-

uncover-the-secret-super-powers-of-your-phone/. Retrieved 17 November 2011.

Mozina M., Demsar, J., Kattan, M., and Zupan, B. (2004). Nomograms for Visualization of Naive

Bayesian Classifier. In Proceedings of the 8th European Conference on Principles and Practice

of Knowledge Discovery in Databases (PKDD '04). Springer-Verlag New York, Inc., New York,

NY, USA, 337-348.

http://www.motorola.com/blog/2011/11/17/motorola-smart-actions-uncover-the-secret-super-powers-of-your-phone/
http://www.motorola.com/blog/2011/11/17/motorola-smart-actions-uncover-the-secret-super-powers-of-your-phone/

BIBLIOGRAPHY 259

Muir, B. (1994). Trust in automation: Part i. theoretical issues in the study of trust and human

intervention in automated systems. Ergonomics, 37(11): 1905–1922.

Muir, B.M. and Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and

human intervention in a process control simulation. Ergonomics, 39(3), 429-460.

Murao, K., Terada, T., Takegawa, Y., and Nishio, S. (2009). A Context-Aware System that Changes

Sensor Combinations Considering Energy Consumption. In Proceedings of the 6th

International Conference on Pervasive Computing (Pervasive '08), Jadwiga Indulska, Donald J.

Patterson, Tom Rodden, and Max Ott (Eds.). Springer-Verlag, Berlin, Heidelberg, 197-212.

Myers, B.A., Weitzman, D., Ko, A.J., and Chau, D.H. (2006). Answering Why and Why Not Questions in

User Interfaces. In Proceedings of the 24th international conference on Human factors in

computing systems (CHI '06). ACM, New York, NY, USA, 397-406.

Mynatt, E. D., Rowan, J., Craighill, S., and Jacobs, A. (2001). Digital family portraits: supporting peace

of mind for extended family members. In Proceedings of the 19th international conference on

Human factors in computing systems (CHI '01). ACM, New York, NY, USA, 333-340.

Newcomb, E., Pashley, T., and Stasko, J. (2003). Mobile computing in the retail arena. Mobile

computing in the retail arena. In Proceedings of the SIGCHI conference on Human factors in

computing systems (CHI '03). ACM, New York, NY, USA, 337-344.

Newman, M.W. Sedivy, J.Z., Neuwirth, C.M., Edwards, W.K., Hong, J.I., Izadi, S., Marcelo, K., and Smith,

T.F. (2002). Designing for serendipity: supporting end-user configuration of ubiquitous

computing environments. In Proceedings of the 4th conference on Designing interactive

systems: processes, practices, methods, and techniques (DIS '02). ACM, New York, NY, USA,

147-156.

Ngair, T.H. (1993). A new algorithm for incremental prime implicate generation. In Proceedings of

the 13th international joint conference on Artificial intelligence (IJCAI'93), 1. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 46-51.

Niculescu-Mizil, A., and Caruana, R. (2005). Obtaining calibrated probabilities from boosting. In

Proceedings of the 21st conference on uncertainty in artificial intelligence. Corvallis: AUAI

Press.

260 BIBLIOGRAPHY

Norman, Donald A. (1988). The Design of Everyday Things. New York, Doubleday.

Nugent, C. and Cunningham, P. (2005). A case-based explanation system for black-box systems.

Artificial Intelligence Review, 24(2), 163–178.

Núñez, H., Angulo, C., and Català, A. (2002). Rule extraction from support vector machines. In

Proceedings of European Symposium on Artificial Neural Networks, 107-112.

Oliver, E.A. and Keshav, S. (2011). An empirical approach to smartphone energy level prediction. In

Proceedings of the 13th international conference on Ubiquitous computing (UbiComp '11).

ACM, New York, NY, USA, 345-354.

Olsen, D. R. (2007). Evaluating user interface systems research. In Proceedings of the 20th annual

ACM symposium on User interface software and technology (UIST '07). ACM, New York, NY,

USA, 251-258.

Orlikowski, W. J. (2000). Using Technology and Constituting Structures: A Practice Lens for

Studying Technology in Organizations. Organization Science 11(4), 404-428.

Oulasvirta, A. (2005). Grounding the Innovation of Future Technologies. Human Technology, 1

(1):58-75.

Parasuraman, R. and Miller, C.A. (2004). Trust and etiquette in high-criticality automated systems.

Communications ACM, 47, 4 (April 2004), 51-55.

Patel, K, Fogarty, J., Landay, J.A., and Harrison, B. (2008). Investigating statistical machine learning

as a tool for software development. In Proceedings of the twenty-sixth annual SIGCHI

conference on Human factors in computing systems (CHI '08). ACM, New York, NY, USA, 667-

676.

Platt, J.C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector

Machines. In Advances in Kernel MethodsSupport Vector Learning. Technical Report MSR-TR-

98-14, Microsoft Research, 1998.

Platt, J.C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods. In Advances in Large Margin Classifiers, A. J. Smola, P. Bartlett, B.

Schölkopf and D. Schuurmans (eds.), 61–74. Cambridge, MIT Press, 1999.

BIBLIOGRAPHY 261

Price, Jim. (2007). Understanding dB. Professional Audio. Retrieved 27 April 2012.

Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R., Wishart, D. S., Fyshe, A., Pearcy, B., MacDonnell,

C., and Anvik, J. (2006). Visual explanation of evidence in additive classifiers. In Proceedings

of the 18th conference on Innovative applications of artificial intelligence - Volume 2

(IAAI'06), Bruce Porter (Ed.), Vol. 2. AAAI Press 1822-1829.

Pu, P. and Chen, L. (2006). Trust building with explanation interfaces. In Proceedings of the 11th

international conference on Intelligent user interfaces (IUI '06). ACM, New York, NY, USA, 93-

100.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

Rabiner L. R. (1989). A tutorial on hidden Markov models and selected applications in speech

recognition. In Proceedings of the IEEE, 77(2):257–286, 1989.

Rimassa, G., Greenwood, D., and Calisti, M. (2005). Palpable computing and the role of agent

technology. In Proceedings of the 4th international Central and Eastern European conference

on Multi-Agent Systems and Applications (CEEMAS'05), Michael Pěchouček, Paolo Petta, and

László Zsolt Varga (Eds.). Springer-Verlag, Berlin, Heidelberg, 1-10.

Robnik-Šikonja, M. and Kononenko, I. (2008). Explaining Classifications For Individual Instances. In

IEEE Transactions on Knowledge and Data Engineering, 20(5): 589-600.

Rosenthal, S., Dey, A.K., and Veloso, M. (2011). Using Decision-Theoretic Experience Sampling to

Build Personalized Mobile Phone Interruption Models. In Proceedings of the 9th

international conference on Pervasive computing (Pervasive'11), Kent Lyons, Jeffrey

Hightower, and Elaine M. Huang (Eds.). Springer-Verlag, Berlin, Heidelberg, 170-187.

Roth-Berghofer, T.R. (2004) Explanations and case-based reasoning: foundational issues. In

Proceedings of Advances in Case-Based Reasoning. Springer-Verlag, Berlin, Heidelberg, Paris,

389-403.

Roto, V., Oulasvirta, A., Haikarainen, T., Kuorelahti, J., Lehmuskallio, H., and Nyyssönen, T. (2004).

Examining Mobile Phone Use in the Wild with Quasi-Experimentation. Helsinky Institute for

Information Technology (HIIT), Technical Report, 1, 2004.

262 BIBLIOGRAPHY

Rukzio, E., Hamard, J., Noda, C., and Luca, A.D. (2006). Visualization of uncertainty in context aware

mobile applications. In Proceedings of the 8th conference on Human-computer interaction

with mobile devices and services (MobileHCI '06). ACM, New York, NY, USA, 247-250.

Schapire, R.E. and Singer, Y. 1999. Improved Boosting Algorithms Using Confidence-rated

Predictions. Machine Learning, 37, 3 (December 1999), 297-336.

Schilit, B.N., Adams, N.I., and Want, R. (1994) Context-aware computing applications. In Proceedings

of the 1st International Workshop on Mobile Computing Systems and Applications, pp. 85–90.

Shinsel, A., Kulesza, T., Burnett, M., Curran, W., Groce, A., Stumpf, S., and Wong, W.K. (2011). Mini-

Crowdsourcing End-User Assessment of Intelligent Assistants: A Cost-Benefit Study. In

Proceedings of the 2011 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 47-54.

Schonlau, M., Soest, A. V., Kapteyn, A., and Couper, M. P. (2006). Selection bias in web surveys and

the use of propensity scores. Sociological Methods & Research, 37(3): 291-318.

Silveira, M.S., de Souza, C.S., and Barbosa, S.D.J. (2001). Semiotic engineering contributions for

designing online help systems. In Proceedings of the 19th annual international conference on

Computer documentation (SIGDOC '01). ACM, New York, NY, USA, 31-38.

Shortliffe, E. H. (1975). Mycin: a Rule-Based Computer Program for Advising Physicians Regarding

Antimicrobial Therapy Selection. Doctoral Thesis. UMI Order Number: AAI7513600.,

Stanford University.

Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I., Consolvo, S., Hightower, J.,

Griswold, W.G., and de Lara, E. (2006). Mobility detection using everyday GSM traces. In

Proceedings of the 8th international conference on Ubiquitous Computing (UbiComp'06), Paul

Dourish and Adrian Friday (Eds.). Springer-Verlag, Berlin, Heidelberg, 212-224.

Sørmo, F., Cassens, J., and Aamodt, A. (2005). Explanation in Case-Based Reasoning — Perspectives

and Goals. Artificial Intelligence, 24(2), 109-143.

Spieker, P. (1991). Natürlichsprachliche Erklärungen in technischen Expertensystemen.

Dissertation, University of Kaiserslautern.

BIBLIOGRAPHY 263

Strauss, A.L. and Corbin, J.M. (1990). Basics of Qualitative Research: Grounded theory procedures and

techniques. Newbury Park, CA: Sage Publications.

Stumpf, S., Rajaram, V., Li, L., Wong, W.K., Burnett, M., Dietterich, T., Sullivan, E., and Herlocker, J.

(2009). Interacting meaningfully with machine learning systems: Three experiments.

International Journal of Human-Computer Studies. 67, 8 (August 2009), 639-662.

Swartout, W. R. (1983). What Kind of Expert Should a System Be? XPLAIN: A System for Creating

and Explaining Expert Consulting Programs. Artificial Intelligence, (21), 285-325.

Swartout, W. R., and Smoliar, S. W. (1987). On Making Expert Systems More Like Experts. Expert

Systems,4(3), 196-207.

Sun, L., Zhang, D., and Li, N. (2011). Physical activity monitoring with mobile phones. In Proceedings

of the 9th International Conference On Smart homes and health Telematics (ICOST'11),

Bessam Abdulrazak, Sylvain Giroux, Hélène Pigot, Bruno Bouchard, and Mounir Mokhtari

(Eds.). Springer-Verlag, Berlin, Heidelberg, 104-111.

Tapia, E. M., Intille, S. S., and Larson, K. (2004). Activity Recognition in the Home Using Simple and

Ubiquitous Sensors. In Proceedings of the 2nd international conference on Pervasive

computing (Pervasive'04), Alois Ferscha and Friedemann Mattern (Eds.). Springer-Verlag,

Berlin, Heidelberg, 158-175.

Terada, T., Tsukamoto, M., Hayakawa, K., Yoshihisa, T., Kishino, Y., Kashitani A., and Nishio, S.

(2004). Ubiquitous Chip: A Rule-Based I/O Control Device for Ubiquitous Computing. In

Proceedings of the 2nd international conference on Pervasive computing (Pervasive'04), Alois

Ferscha and Friedemann Mattern (Eds.). Springer-Verlag, Berlin, Heidelberg, 238-253.

Tickle, A.B., Andrews, R., Golea, M., and Diederich, J. (1998). The truth will come to light: Directions

and challenges in extracting the knowledge embedded within trained artificial neural

networks. IEEE Transactions on Neural Networks, 9(6), 1057-1068.

Tintarev, N. (2007). Explaining Recommendations. In Proceedings of the 11th international

conference on User Modeling (UM '07), Cristina Conati, Kathleen Mccoy, and Georgios

Paliouras (Eds.). Springer-Verlag, Berlin, Heidelberg, 470-474.

264 BIBLIOGRAPHY

Tseitin, G.S. (1968). On the complexity of derivation in propositional calculus. In Studies in

Constructive Mathematics and Mathematical Logic, Part II, A. Slisenko, Ed. Seminars in

Mathematics, V.A. Steklov, Mathematical Institute, Leningrad, vol. 8. Consultants Bureau, 115-

125. English translation appears in Automation of Reasoning 2: Classical Papers on

Computational Logic 1967-1970, J. Siekmann and G. Wrightson, Eds. Springer (1983), 466-

483.

Tsukada, K. and Yasumura, M. (2004). ActiveBelt: Belt-Type Wearable Tactile Display for

Directional Navigation. In Proceedings of the 6th international conference on Ubiquitous

computing (UbiComp '04), 384-399.

Tullio, J., Dey, A.K., Fogarty, J., and Chalecki, J. (2007). How it works: A field study of non-technical

users interacting with an intelligent system. In Proceedings of the SIGCHI conference on

Human factors in computing systems (CHI '07). ACM, New York, NY, USA, 31-40.

Van der Meik, H. (1987). Assumptions of information-seeking questions. Questioning Exchange, 1,

111-118.

van Kasteren, T., Noulas, A., Englebienne, G., and Kröse, B. (2008). Accurate Activity Recognition in a

Home Setting. In Proceedings of the 10th international conference on Ubiquitous computing

(UbiComp '08). ACM, New York, NY, USA, 1-9.

Van Melle, W., Shortliffe, E.H., and Buchanan, B.G. (1984). Emycin: A knowledge-engineer's tool for

constructing rule-based expert systems. In E.H. Shortliffe and B.G. Buchanan, editors, Rule-

Based Expert Systems, Addison- Wesley, 302-313.

Vermeulen, J., Slenders, J., Luyten, K., and Coninx, K. (2009). I Bet You Look Good on the Wall:

Making the Invisible Computer Visible. In Proceedings of the European Conference on

Ambient Intelligence (AmI '09), Manfred Tscheligi, Boris Ruyter, Panos Markopoulus, Reiner

Wichert, Thomas Mirlacher, Alexander Meschterjakov, and Wolfgang Reitberger (Eds.).

Springer-Verlag, Berlin, Heidelberg, 196-205.

Vermeulen, J. (2010). Improving intelligibility and control in Ubicomp. In Proceedings of the 12th

ACM international conference adjunct papers on Ubiquitous computing (Ubicomp '10). ACM,

New York, NY, USA, 485-488.

BIBLIOGRAPHY 265

Vermeulen, J., Vanderhulst, G., Luyten, K., and Coninx, K. (2010). PervasiveCrystal: Asking and

Answering Why and Why Not Questions about Pervasive Computing Applications. In

Proceedings of the 2010 Sixth International Conference on Intelligent Environments (IE '10).

IEEE Computer Society, Washington, DC, USA, 271-276.

Vurgun, S., Philipose, M., and Pave, M. (2007). A statistical reasoning system for medication

prompting. In Proceedings of the 9th international conference on Ubiquitous computing

(UbiComp '07), John Krumm, Gregory D. Abowd, Aruna Seneviratne, and Thomas Strang

(Eds.). Springer-Verlag, Berlin, Heidelberg, 1-18.

Ware, C. (2000). Information Visualization: Perception for design. San Francisco, CA: Morgan

Kaufmann.

Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3): 94-104.

Weiser, M. and Brown, J.S. (1997). The coming age of calm technology. Beyond Calculation: the Next

Fifty Years, 75-85.

Weka 3: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weka/. Retrieved 27th

January 2012.

Weka for Android. https://github.com/rjmarsan/Weka-for-Android. Retrieved 26th August 2011.

Welbourne, E., Balazinska, M., Borriello, G., and Fogarty, J. (2010). Specification and Verification of

Complex Location Events. In Proceedings of the 8th international conference on Pervasive

computing (Pervasive'10), 57-75.

Wick, M.R., and Slagle, J.R. (1989). An explanation facility for today’s expert systems. IEEE Expert:

Intelligent Systems and Their Applications, 4(1), 26-36.

Wilson, D.H. and Atkeson, C. (2005). Simultaneous tracking and activity recognition (STAR) using

many anonymous, binary sensors. In Proceedings of the Third international conference on

Pervasive Computing (Pervasive'05), Hans-W. Gellersen, Roy Want, and Albrecht Schmidt

(Eds.). Springer-Verlag, Berlin, Heidelberg, 62-79.

Wong, W.K., Oberst, I., Das, S., Moore, T., Stumpf, S., McIntosh, K., and Burnett, M. (2011). End-user

feature labeling: a locally-weighted regression approach. In Proceedings of the 16th

http://www.cs.waikato.ac.nz/ml/weka/
https://github.com/rjmarsan/Weka-for-Android

266 BIBLIOGRAPHY

international conference on Intelligent user interfaces (IUI '11). ACM, New York, NY, USA,

115-124.

Yan, Z., Liu, C., Niemi, V., and Yu, G. (2010). Effects of displaying trust information on mobile

application usage. In Proceedings of the 7th international conference on Autonomic and

trusted computing (ATC'10), Bing Xie, Juergen Branke, S. Masoud Sadjadi, Daqing Zhang, and

Xingshe Zhou (Eds.). Springer-Verlag, Berlin, Heidelberg, 107-121.

Zheng, Y., Li, Q., Chen, Y., Xie, X., and Ma, W.Y. (2008). Understanding mobility based on GPS data. In

Proceedings of the 10th international conference on Ubiquitous computing (UbiComp '08).

ACM, New York, NY, USA, 312-321.

Zheng, Y., Chen, Y., Li, Q., Xie, X., and Ma, W.Y. (2010). Understanding transportation modes based on

GPS data for web applications. ACM Transactions on the Web, 4(1), 1-36.

Zimmermann, A. (2003). Context-awareness in user modelling: requirements analysis for a case-

based reasoning application. In Proceedings of the 5th international conference on Case-

based reasoning: Research and Development (ICCBR'03), Kevin D. Ashley and Derek G. Bridge

(Eds.). Springer-Verlag, Berlin, Heidelberg, 718-732.

267

A INTELLIGIBILITY TOOLKIT

SOFTWARE

The Intelligibility Toolkit is released as open source under the GNU General Public License (GPL)5.

A website for the updated Context Toolkit and the Intelligibility Toolkit is located at:

http://contexttoolkit.org6

It contains:

 A description of the Context Toolkit and Intelligibility research

 A list of publications related to Context Toolkit and Intelligibility in Context-Aware

Applications

 Documentation for the software, including

o Description of the Context Toolkit and Intelligibility Toolkit components

o Download and Installation

o Javadoc API Documentation

o Tutorials on how to use both toolkits

o Demonstration Applications

 Information on how to download the source code and binaries

5
 GNU General Public License. http://www.gnu.org/licenses/gpl.html. Retrieved 4 April 2012.

6
 Retrieved 4 April 2012.

7
 Circular Error Probable. http://en.wikipedia.org/wiki/Circular_error_probable. Retrieved 27 April 2012.

http://contexttoolkit.org/
http://www.gnu.org/licenses/gpl.html

269

B INTELLIGIBILITY TOOLKIT

EXPLAINERS

We provide the theoretical definitions, mathematical proofs detailing the derivations and

explanation generation algorithms of the explainers implemented in the Intelligibility Toolkit. The

explainers explain inference, not how the models were learned.

B.1 ABSTRACT BASE EXPLAINER

To align with later terminology in this appendix, we use the term class to refer to a discrete (or

nominal) output value. We use the term feature to refer to an input. We shall also use the term infer

to refer to the concept of the context-aware model reasoning or deciding. These terms are

commonly used in the machine learning literature.

B.1.1 WHAT EXPLANATION

We describe the event that the th class was inferred as

where is the output variable, and is the output value of the th class.

The What explanation returns .

B.1.2 INPUTS EXPLANATION

We denote the inputs to the inference model as a vector of feature values:

270 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

 (B.1)

where is value of the th input feature.

B.1.3 OUTPUTS EXPLANATION

We denote the output values from the inference model as a vector of possible values:

 (B.2)

where is the th class value.

B.2 ENACTOR BASE EXPLAINER

The base Explainer generates explanation types that are model-independent. Particularly, these

explanations depend on the underlying architecture or toolkit for building the context-aware

application, but they do not depend on the inference model. Here, we describe the algorithms for

generating the explanation types from the Context Toolkit.

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Reference

Reference

Out-Widget

Attribute

Attribute

Attribute

Attribute

Context
Outputs

Querier ExplainerSelector PresenterReducer

Service

Attribute

Attribute

Attribute

Attribute

FuncDesc

FuncDesc

Output
Value

Output
Value

Output
Actions

FuncDesc

FuncDesc

B.2 INTELLIGIBILITY TOOLKIT EXPLAINERS 271

B.2.1 WHAT EXPLANATION

The What explanation retrieves the triggered output value in the Enactor.

B.2.2 WHAT ELSE EXPLANATION

The What Else explanation traces the Attribute in the Out-Widget that is changed, and the

associated FunctionDescriptions corresponding to the actions or services that were performed.

B.2.3 WHEN EXPLANATION

The When explanation retrieves the timestamp of when the value was updated.

Context
Outputs

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Reference

Reference

Attribute

Attribute

Attribute

Attribute

Out-Widget

Attribute

Attribute

Attribute

Attribute

Output
Value

What Explainer PresenterReducer

Output
Value

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Reference

Reference

Attribute

Attribute

Attribute

Attribute

Out-Widget

Context
Outputs

Service

Attribute

Attribute

Attribute

FuncDesc

FuncDesc

Output
Actions

Output
Value

Attribute FuncDesc

FuncDesc

What Else Explainer PresenterReducer

Output
Value

272 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.2.4 INPUTS EXPLANATION

The Inputs explanation selects the EnactorReference that was triggered, and the corresponding

WidgetState of Attribute values from the In-Widget.

B.2.5 OUTPUTS EXPLANATION

The Outputs explanation lists all output values that may be generated from the Enactor.

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Reference

Out-Widget

Context
Outputs

Attribute

Attribute

Attribute

Attribute

Output
Value

Output
Value

Reference
Attr Value

Attr Value

Attr Value

Attr Value

Inputs Explainer PresenterReducer

Context
Outputs

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Reference

Reference

Attribute

Attribute

Attribute

Attribute

Out-Widget

Attribute

Attribute

Attribute

Attribute

Output
Value

Outputs Explainer PresenterReducer

Output
Value

B.3 INTELLIGIBILITY TOOLKIT EXPLAINERS 273

B.2.6 WHAT IF EXPLANATION

The What If explanation takes in a InputQuery with user specified input Attribute values,

combines them with the actual sensed attribute values that were unspecified, and triggers the

corresponding EnactorReference and output value.

B.3 WEKA BASE EXPLAINER

We implement some algorithms for model-independent explanations to support the use of the

Intelligibility Toolkit for developers who use the Weka framework, but not the Context Toolkit. It

supports explanations for What, What If, Inputs, Outputs, and Certainty, but does not implement

explanations for When, and History.

In fact, we have decoupled the Intelligibility Toolkit from the Context Toolkit to make it more

portable, e.g., such as porting to Android phones.

B.3.1 WHAT AND WHAT IF EXPLANATIONS

The What explanation is essentially the inference made on the input Instance. This is obtained by

calling the Classifier.classifyInstance(Instance) and Instance.value(double). On its

own a classifier model does not perform any action or service, so the What explanation is

equivalent to the What If explanation.

In-Widget

Enactor
Application

Inference Model

Context
Inputs

Output
Values

Out-Widget

Context
Outputs

Attribute

Attribute

Attribute

Attribute

Output
Value

Reference
Attribute

Attribute

Attribute

Attribute
Reference

Output
Value

Explainer PresenterReducer

What If

Attr Value

Attr Value

274 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.3.2 INPUTS EXPLANATION

The Inputs explanation is obtained from taking the input Instance that was passed to the

classifier, and converting it to an Expression DNF form with one Reason consisting of input features

as each element.

B.3.3 OUTPUTS EXPLANATION

In the Weka framework, each Instance contains information about its class Attribute. This Attribute,

in turn, contains information about the possible values it can take. By calling

Attribute.values(), we can obtain the Outputs information that we present in the Outputs

explanation.

B.3.4 CERTAINTY EXPLANATION

For each classification a Weka classifier makes of an instance, it can provide the probability

distribution for all class values. This distribution can be retrieved by calling the

distributionForInstance(Instance) method, and it returns the probability of or certainty for

inferring the outcome of the input instance as each of the class values.

B.3.5 MODEL-BASED EXPLANATIONS

The remaining explanation types depend on the individual algorithms of each classifier. We have

implemented Weights of Evidence explainers for all currently-supported classifiers in the

Intelligibility Toolkit. Furthermore, the Decision Tree classifier, J48, has a reasoning trace explainer.

B.4 RULE TRACE EXPLAINER

This explainer seeks to provide an explanation by tracing the inference path through a set of rules

and considering paths that were or were not triggered.

We consider rules consisting of condition literals (e.g., , , x)

which may be combined with Boolean operators AND (represented with ‘ ’ or as a product ‘ ’, ‘ ’ in

our notation) and OR (represented with ‘ ’ or as a sum ‘ ’). Hence, each rule or multiple rules can

be considered a Boolean expression, . To be able to generate explanations from , we choose to

convert them into disjunctive normal form (DNF), , which is very suitable for automated

deduction:

B.4 INTELLIGIBILITY TOOLKIT EXPLAINERS 275

We define an explanation in terms of one or multiple reasons (e.g., multiple reasons for Why Not).

Each reason can be a singular conditional (e.g., one certainty value for a Certainty explanation) or a

conjunction (e.g., multiple conditionals for a Why explanation). The conditional is the atomic unit of

an explanation (e.g., certainty=90%, temperature<24°C). Furthermore, there can be negated

conditionals (e.g., not temperature≥24°C). Formally, we define explanations in Disjunctive Normal

Form (DNF), i.e. a disjunction (OR) of conjunctions (ANDs) of condition literals (see example in

Figure 6.7). The standardization of explanation information supports R4 such that there is a

standard way to pipe and feed different explanation types.

(B.3)

where

 is the DNF tree form of the rules, (B.4)

 is the th rule trace clause in that DNF, and (B.5)

 is the th condition literal in that rule trace.

Figure B.1 illustrates a diagrammatic representation of .

Figure B.1: Diagram representation of the Explanation Data Structure in Disjunctive Normal

Form (DNF). Each circular node represents a condition literal, each vertical column

represents a conjunction of literals, and these are joined horizontally as a disjunction.

Output
Value

∩

∩

…

276 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

We cover a naïve algorithm to perform such a conversion in Section B.4.1.

B.4.1 NAÏVE CONVERSION OF ARBITRARY BOOLEAN EXPRESSION TO DNF

A common strategy to convert an arbitrary Boolean expression to disjunctive normal form (DNF) is

to first convert it to negation normal form (NNF), :

(B.6)

First, we convert the arbitrary Boolean expression, , to Negation Normal Form (NNF) by “pushing

negations in” to the literal terms, then applying the following logical equivalences

 M ’

(B.7)

Double negative

elimination
 (B.8)

Next, we convert the NNF to DNF by applying the logical equivalence:

Distributivity

(B.9)

To convert to DNF, we only need the first rule in Equation (B.9). Figure B.2 and Figure B.3 describe

the algorithms for converting an arbitrary Boolean expression to DNF.

B.4 INTELLIGIBILITY TOOLKIT EXPLAINERS 277

Figure B.2. Recursive algorithm to convert an arbitrary Boolean expression to NNF.

Figure B.3. Recursive algorithm to convert a Boolean expression in NNF to DNF.

 = Boolean expression in NNF

 := new empty trace clause

 := new empty DNF // gets updated in NNFtoDNF

NNFtoDNF()

NNFtoDNF()

 If for some // disjunction

 For each

 := Clone // duplicate trace to branch for each disjunction path

 NNFtoDNF() // recurse for each disjunction branch

 Else If for some // conjunction

 For each

 NNFtoDNF() // recurse to extend this path

 Else // is terminal literal reached leaf

 // convert terminal Boolean expression to condition literal

 // append literal to trace clause

 // append trace clause to DNF

 = original Boolean expression

 = ToNNF() // Boolean expression in NNF

ToNNF()

 If for some // negation

 If for some // double negation, i.e.,

 Return ToNNF() // double negation elimination

 If for some // disjunction

 Return // apply M ’

 If for some // conjunction

 Return // M ’

 Else

 If for some // disjunction

 Return // recursively apply ToNNF

 If for some // conjunction

 Return // recursively apply ToNNF

// terminal literal

 Return // return self

278 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

In general, converting an arbitrary Boolean expression into DNF can be expensive (e.g., converting

CNF to DNF can cause an exponential blow-up in size [Ngair, 1993]). However, we assume that

these rules will be handcrafted by end-users or designers of applications, so they should not be

overly complicated. For example, Motorola’s Smart Actions [Motorola, 2011] only allows end-users

to write individual rules with a set of triggers that may be activated, i.e., each rule is a conjunction of

condition literals.

B.4.2 LOGIC MINIMIZATION TO SIMPLIFY OF RULES

The conversion to DNF does not guarantee that the DNF tree, , will be simple or minimized. It may

contain much redundancy and repetition of literals or clauses. We can employ QmcReducer (see

Section 6.11.1.3), which uses the Quine-McCluskey algorithm to minimize Boolean functions

 M (B.10)

To save on future computation when explanations are asked, this minimization may be performed

when parsing the rules into DNF. However, this compromises the original structure of the rules,

which end-users may have hand-crafted, and therefore may be more intelligible than in a

compressed, minimized form.

B.5 DISJUNCTIVE NORMAL FORM (DNF) EXPLAINER

We keep separate the rules that infer different classes, i.e., . For an inference

model with possible class values, we will store a DNF rule tree for each class value, , in a map of

DNF trees:

 (B.11)

B.5 INTELLIGIBILITY TOOLKIT EXPLAINERS 279

where

 is the DNF tree for all rules that infer the th class, (B.12)

 is the th rule trace clause in that DNF, and (B.13)

 is the th condition literal in that rule trace.

The explanation generation algorithms also apply to explanations for decision trees (see Section

B.9), since we also convert decision trees to DNF.

B.5.1 NOTATION FOR EXPLANATIONS GIVEN INPUTS STATE

Given as a Boolean expression that can be a literal or compound expression (conjunction,

disjunction, DNF, etc.), and as an inputs state, we introduce the notation

where denotes that is not described in . In probability theory, this is equivalent:

where for a deterministic, rule-based system, probability can only take values 0 or 1.

For an inference model, the th class is inferred when

 (B.14)

For a rule-based inference model inferring the th class, each is mutually exclusive

 (B.15)

Conversely, the negation of yields the behavior:

280 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

 (B.16)

B.5.2 CERTAINTY EXPLANATION

While it is possible to model rules with uncertainty (e.g., Fuzzy control systems with fuzzy logic

rules), currently, the rules of the Enactor framework does not provide certainty information.

B.5.3 WHY EXPLANATION

This explains why the th class was inferred given the inputs . We select a subset of the DNF tree

can infer the th class, specifically, the traces that do infer the th class given inputs

 (B.17)

where

 is a trace consisting of conditions

 is whether trace is satisfied by inputs

 , is whether condition is satisfied by inputs

We can also notate Equation (B.56) in terms of individual conditions:

 (B.18)

where denotes traces that are satisfied by the inputs state .

B.5.4 WHY NOT EXPLANATION

Given that the th class was inferred, this provides an explanation for why the th class was not

inferred. First, we obtain traces that can infer the th class under the relevant (not the current)

B.5 INTELLIGIBILITY TOOLKIT EXPLAINERS 281

input conditions. This selects all the traces in the DNF tree for the th class,
.

Furthermore, the negation of this DNF tree is true given inputs and this is equivalent to a

conjunctive normal form (CNF) using to De Morgan’s laws:

(B.19)

We define to indicate the filtered trace of
 that only includes conditions, ,

that were satisfied by . For a trace that is fully satisfied by , where , this returns the

full trace, i.e.,

 (B.20)

Now, we consider the case where is not satisfied by , i.e.,

Note that while is a conjunction,
 is a disjunction as derivable by De Morgan’s laws:

 indicates the partial disjunction of conditions,

 , that are satisfied by , or conversely, the

partial disjunction of conditions, , that are not satisfied by :

 (B.21)

where

282 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

For the Why Not explanation, we perform this treatment for all traces, , to get an expression in

CNF:

 (B.22)

where

Should purge duplicates.

B.5.5 HOW TO EXPLANATION

Suppose that the user is interested to know how the th class may be inferred. The How To

explanation returns the full DNF tree that can infer th class:

 (B.23)

Essentially, this explanation describes the various conditions that must be true for the th class to

be inferred, either one of the rule traces .

Explanation algorithms for rule DNF is implemented in the explainer delegate

DnfTreeExplainerDelegate.

B.6 SEPARABLE-RULES DNF EXPLAINER

We may want to retain some semantic meaning in individual rules, rather than naively merge them

together. For example, rules may be given names to aid end-users to remember their purpose or

rationale, and to help them distinguish between other rules.

B.6 INTELLIGIBILITY TOOLKIT EXPLAINERS 283

For an inference model with possible class values, we will store a map of DNF trees for each class

value, , in a map of maps of DNF trees:

 (B.24)

where

 is the map of all DNF trees for all rules that infer the th class, (B.25)

 is the th rule as a DNF tree, (B.26)

 is the th rule trace clause in that DNF, and (B.27)

 is the th condition literal in that rule trace.

B.6.1 WHY EXPLANATION

Substituting Equation(B.24) into (B.17) gives:

 (B.28)

which is a double disjunction of trace clauses, where traces due to each th rule is kept separate.

For the simple case where each rule has only one trace conjunction in its DNF form, i.e., ,

Equation (B.28) is simplified to

 (B.29)

So, the explanation only provides a disjunction of satisfied traces.

284 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.6.1.1 WHY EXPLANATION OF MERGED RULES

Merging results from Equation (B.28) yields:

 (B.30)

Note that this only adds satisfied (i.e.,) traces from each DNF tree to the explanation, not

the whole DNF tree.

B.6.1.2 WHY EXPLANATION AS RULE NAME

This presents the same information as Equation (B.28), but allows incremental retrieval of

explanations. First, we retrieve the rule by name

 (B.31)

where refers to the index or name for the th rule.

Later, the end-user may ask for details about that rule, and can see explanation:

Programmatically, this is equivalent to .

B.6.2 WHY NOT EXPLANATION

Substituting Equation (B.24) into (B.22) gives a conjunction of CNFs:

 (B.32)

B.7 INTELLIGIBILITY TOOLKIT EXPLAINERS 285

B.6.3 HOW TO EXPLANATION

This is similar to Equation (B.23), but we retain separation of each DNF tree representing a

different rule:

 (B.33)

B.7 ENACTOR RULES EXPLAINER

This implements the algorithms in Rule Trace Explainer (see Section B.4) to explain the rules

executed in Enactors [Dey and Newberger, 2009] within the Context Toolkit [Dey, Abowd, and

Salber]. First, we parse the rule encoded as AbstractQueryItems into the Expression framework

of the Intelligibility Toolkit. We then apply algorithms in Figure B.2 and Figure B.3 to generate the

map of DNF trees, , allowing us to generate explanations in Section B.5.

B.8 OTHER SYSTEM RULES EXPLAINERS

Other context-aware systems that use rules for inference may also be able to leverage the

algorithms in Sections B.4 and B.5 for explaining rules by parsing their rules into into the

Expression framework of the Intelligibility Toolkit.

B.9 DECISION TREE RULE TRACE EXPLAINER

We parse the decision tree structure into disjunctive normal form (DNF), from which we can more

easily generate explanations. Each conjunction represents a trace from the root node of the tree to a

leaf. Therefore, the number of conjunctions is equal to the number of leaves.

(B.34)

286 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Figure B.4. (Left) A simple decision tree illustrating the condition literal of each edge and the

class value that will be inferred at each leaf. (Right) DNF trees for each class value that is

built after traversing the tree and collecting traces with the same inferred class value at

their leaves. Although this diagram illustrates the conversion for a binary decision tree, the

conversion is applicable to trees with more than two branches at each node.

Figure B.4 illustrates the decision tree conversion to DNF, and Figure B.5 and Figure B.6 describes

the algorithm. Once in DNF, we generate explanations using techniques in Section B.5.

Figure B.5. Algorithm to traverse the decision tree depth-first to convert it into DNF.

X2

Yj

X1 ¬X1

X2 ¬X2

Yi

X1

X1

X2

Yi

∩ ∩

∩

X1

¬X2

Yj

∩ ∩

∩

 = root node of decision tree

 := new empty trace clause // stores a conjunction of condition literals,

 = map of DNFs of each class value // gets updated in TreetoDNF

TreeToDNF(, ,)

TreeToDNF(, ,)

 If parent of for some // has child nodes

 For each child node

 EdgeLiteral() // define condition literal to represent edge from to

 := Clone // duplicate trace to extend for each child path

 // append literal to trace clause

 TreeToDNF(, ,)

 Else // is a leaf

 := read probability class distribution at node

 // inferred class value has the maximum class probability

 // retrieve DNF that infers the th class

 // append trace clause to

B.10 INTELLIGIBILITY TOOLKIT EXPLAINERS 287

Figure B.6. Algorithm to obtain the condition literal representing an edge transition in the

decision tree. This is specifically implemented for J48 in Weka, but can be generally

applicable for other decision tree implementations.

This algorithm is implemented in J48RuleTraceExplainer.

B.10 OTHER RULES EXPLAINERS

Other rule explainers may also be developed. For example, a more efficient algorithm to convert an

arbitrary Boolean expression to DNF is the EXPAND algorithm proposed in [Crama and Hamer,

2008, p. 22], which was inspired by Tseitin [1968] and [Blair, Jeroslow, and Lowe, 1986]. This

algorithm runs in polynomial time instead of exponential time of the previously described naïve

method. This can be implemented in a rule explainer to speed up the explanation generation.

Aules can be extracted from inference models that are intrinsically not rule-based, such as Artificial

Neural Networks (ANN) [Tickle et al., 1998], and Support Vector Machines (SVM) [Núñez, H.,

Angulo, C., Català, 2002]. This allows other non-rule-based models to be explained using the rule

paradigm, which is familiar to lay end-users.

B.11 WEIGHTS OF EVIDENCE EXPLAINER

This explainer forms the abstract basis of our subsequent weights of evidence explainers. It uses

the underlying concept that an inference is due to a total evidence, where this evidence may

support or oppose the inference, and can be due to a sum of underlying atomic weights of evidence.

These weights may be due to the input feature values voting for or against an inference. Depending

EdgeLiteral()

 = attribute described in

 If is nominal // describes a nominal attribute split

 th value of

 Else If is numeric // describes a numeric attribute binary split

 If

 // learned split point for th feature at this node

 Else If

 Return

288 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

on the inference model, there may also be more dimensions of atomic weights. For simplicity, we

denote an atomic evidence as , and the space of all atomic weights as . A total evidence can thus

be represented as the sum:

 (B.35)

Equation (B.35) requires that the explainer is able to derive a linear additive expression of atomic

units. This is easy for linear classifiers (e.g., linear SVM), but in general, isotonic (monotonic

increasing) transformations may be required (e.g., see explainer for naïve Bayes in Section B.15).

We defer these steps to later sections describing the concrete explainers.

We shall next show how with this absolute weights of evidence, we can derive weights of evidence

explanations for Why and Why Not questions.

B.11.1 ABSOLUTE EVIDENCE

This explains the value of as a total evidence due to the sum of atomic weights:

 (B.36)

where is the th atomic weight of evidence.

B.11.2 WHY NOT EXPLANATION

This explains why the th class was not inferred over the th class. In other words, why the th class

was inferred instead of the th class.

Note that this is different from the Why Not explanation of a rule trace that explains why the th

class was not inferred. In this case, the th class may have been inferred, but just not with the

highest certainty among all class values.

 (B.37)

where and we assume that the atomic weights of evidence are separable by each

atomic unit.

B.11 INTELLIGIBILITY TOOLKIT EXPLAINERS 289

B.11.3 WHY EXPLANATION

This explains why the th class was inferred over all other class values , i.e.,

Consequently, Equation (B.37) holds for , such that we can sum over to get the Why

explanation:

 (B.38)

B.11.4 CERTAINTY EXPLANATION

Assuming that at the system level, the model will produce a distribution of certainty for inferring

each class value, the Certainty explanation returns this distribution:

 (B.39)

where is the total certainty (usually normalized as a probability to 1) and is the certainty for

inferring the th class value.

B.11.5 HOW TO EXPLANATION

The How To explanation depends on underlying model and we defer this to the later sections. Also

note that since this is a general explanation independent of specific instances, we do not provide the

explanation in terms of input feature values, . Generally, this explanation will be presented as a

multivariate inequality with the input features as variables.

Consider that the th class was inferred and the user asks How To infer the th class. First we

compute the current evidence for the th class using Equation (B.36):

290 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Substituting this into Equation (B.38), we get

 (B.40)

where is separable for each term and is a function of only the term. The

exact expression of depends on the Explainer. We describe three common forms.

B.11.5.1 NUMERIC LINEARLY SEPARABLE

Some Explainers (e.g., for linear regression, logistic regression, SVM, kNN) produce expressions for

 which are linearly separable for each , i.e.,

(B.41)

where

 (B.42)

is a linear function of and is a coefficient, of which concrete Explainers will need to derive

expressions (or approximations).

The How To explanation expresses a linear equation of input feature values, such that .

For specific How To explanations of each Weights of Evidence explainer, we will just derive

expressions for in terms of input features, .

B.11.5.2 NUMERIC NORMAL DISTRIBUTION

Some Explainers (e.g., for naïve Bayes) assume that numeric attributes follow a Normal distribution

given the class value, , i.e.,

 (B.43)

B.11 INTELLIGIBILITY TOOLKIT EXPLAINERS 291

 (B.44)

where is the mean value of the th feature and is its standard deviation.

An approximate How To explanation for inferring the th class is just to return the mean value

of each th input feature which maximizes , i.e.,

 (B.45)

B.11.5.3 NOMINAL INPUT FEATURE

If each input feature is a nominal / discrete variable, then we can find all combinations of such

that through permutation.

B.11.6 HOW TO IF EXPLANATION

We can provide a more operationally useful explanation with How To If that fixes (makes constant)

all but one input feature, . We consider the current total evidence for inferring the th class,

 , where the hat notation indicates current input feature values of the instance, . Note that

the actual value of depends on whether the th class was actually inferred, i.e.,

The How To If explanation describes the range of values of to satisfy the condition , i.e.:

 (B.46)

Similarly to the How To explanation, the How To If depends on the form of the input feature.

B.11.6.1 NUMERIC LINEARLY SEPARABLE

Substituting Equation (B.42) into Equation (B.46) gives the How To If explanation:

292 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

 (B.47)

where

B.11.6.2 NUMERIC NORMAL DISTRIBUTION

Considering atomic weights of evidence as log transformations of probabilities (e.g., Equation

(B.93)), we have:

(B.48)

EQUAL VARIANCE

Assuming equal variances, , Equation (B.48) becomes

(B.49)

where

B.11 INTELLIGIBILITY TOOLKIT EXPLAINERS 293

Therefore, substituting Equation (B.49) into Equation (B.46):

 (B.50)

Solving Equation (B.50), we get the range of values of for the How To If explanation:

 (B.51)

where

and

 when

 .

UNEQUAL VARIANCE

We can also solve for a range of values for without assuming equal variance and, instead, solve a

quadratic equation. Equation (B.48) becomes:

(B.52)

where

294 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Substituting Equation (B.52) into Equation (B.46):

(B.53)

where

Solving Equation (B.53), we get the range of values of for the How To If explanation:

 (B.54)

where

B.12 LINEAR REGRESSION EXPLAINER

A common and simple way to model application behavior is using a linear function, where multiple

input factors influence an output value (e.g., outdoor temperature and number of occupants

influencing the heat output of a temperature control system). Formally, the function takes the form:

 (B.55)

where is the scaling factor for each input, and is the value of the th input feature.

B.12 INTELLIGIBILITY TOOLKIT EXPLAINERS 295

For a given input state, , we can explain how each input feature value, ,

influences the output due to the value . Thus we can explain the outcome using the

Weights of Evidence explanation:

 (B.56)

where is the evidence due to each input feature, and is the total evidence.

Equation (B.56) forms the basis of the remaining Weights of Evidence explanations in terms of

input features.

B.12.1 CERTAINTY EXPLANATION AS MEASUREMENT UNCERTAINTY

While the most classification techniques covered in the Intelligibility Toolkit models the certainty

(or confidence) of inferring the output as various nominal class values, certainty in regression is a

different concept typically indicating the uncertainty or error of the numeric output. This is

particularly meaningful for inputs representing physical measures (e.g., temperature, energy).

Using the method addition in quadrature that calculates uncertainty due to sums and differences for

random and independent uncertainties, the uncertainty of the output is:

 (B.57)

where represents the error of the term , specifically, is the uncertainty in , and is the

uncertainty in . could be the conditional standard deviation or a confidence interval given the

inferred value , or the actual measurement error in . For manually defined functions, each

could be 0 or a constant value; for learned regression functions, could be the least squares

error.

Assuming independence between the estimated parameter and stochastic variable , there will

be no covariance or correlation between them, and Equation (B.57) becomes:

 (B.58)

296 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

For simplicity, if we assume no uncertainty in , Equation (B.57) then becomes:

 (B.59)

Note that this results represents the measurement uncertainty in the output value, not the certainty

that the output value is correct.

B.13 LOGISTIC REGRESSION EXPLAINER

Now that we have dealt with explaining functional outputs, we turn to explaining functions that are

used for pairwise categorical inference (two categorical states). In particular, Logistic Regression is

commonly used to transform weights output into a choice between two values (i.e., 0 or 1). We

begin by considering the simpler case of logistic regression for binary classification and then

discuss it for the multiclass problem.

B.13.1 BINARY LOGISTIC REGRESSION

The binary Logistic Regression models the probability of inferring class value 1 (instead of 0) as a

sigmoid function of a linear expression of input features:

 (B.60)

where is the value for the th input feature, is the gain, and is constant term.

A logit (log-odds) transform,

 , on Equation (B.60) converts it to linear form:

 (B.61)

Equation (B.61) is exactly the same form as Equation (B.55) for linear regression, and so we can

apply the same explanation techniques as for linear regression:

 (B.62)

where is the evidence due to each input feature, and is the total evidence.

B.13 INTELLIGIBILITY TOOLKIT EXPLAINERS 297

B.13.2 MULTINOMIAL LOGISTIC REGRESSION

Logistic Regression is intrinsically a binary classifier, so a multi-class extension approach needs to

be applied to support multiclass classification. The Weka toolkit uses a one-vs.-one approach and

models a multinomial Logistic Regression with class values and input features with:

 pairwise classifiers are built that compares the first class values against the

last class. The th classifier learns the linear function

 The probability of inferring the th class value () for the current input state is

 The probability of inferring the th class value (i.e., the last class value) is

where is the normalization factor,
 , , and

 . We choose . We can see that this satisfies

 .

Unfortunately, the total evidence for inferring the th class is 0, and this can lead to problems

when we want to use this evidence to explain ensemble methods (see later, Section B.20), because

they may need to normalize a non-zero total evidence. We can work around this problem by

relaxing the requirement that , and defined

 , where

For simplicity, we can set . We also need to preserve the proportionality among each , i.e.:

So needs to be added to each pairwise classifier. This changes the probability of inferences:

298 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

1. pairwise classifiers are built that compares the first class values against the

last class. The th classifier learns the linear function

2. The probability of inferring the th class value () for the current input state is

3. The probability of inferring the th class value (i.e., the last class value) is

where is the normalization factor,
 , and ,

 . We can see that this still satisfies

 .

To get a linear additive Weights of Evidence, we take a log transform:

(B.63)

where

B.13.3 INPUTS FEATURE NORMALIZATION AND STANDARDIZATION

Often it is useful to pre-process the data before training or using an inference model (e.g., SMO,

kNN) by performing normalization:

 (B.64)

B.13 INTELLIGIBILITY TOOLKIT EXPLAINERS 299

or min-max normalization (called standardization in the Weka toolkit; scales the range to 0 to 1):

 (B.65)

This can reduce bias due to the relative value sizes of different features. The consequence of this is

that the model is trained and tested on the normalized/standardized features, which is not as

meaningful to end-users as the original features. Particularly, this affects the weights used in the

Weights of Evidence style of explanation. Therefore we need to invert these pre-processes in

generated explanation. To invert normalization:

(B.66)

where is the mean value of the th input feature, its standard deviation over the training

dataset, and

Similarly, to invert min-max normalization:

 (B.67)

where

300 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.14 LINEAR SUPPORT VECTOR MACHINE (SVM) EXPLAINER

Linear support vector machines (SVM) use a maximum-margin hypothesis to train a linear classifier

to discriminate between two (binary) class values. In its simplest form, it outputs a continuous

numeric output, which can be calibrated to give a more accurate probability output for its inference.

Several techniques exist to extend linear SVMs to handle multiple class values, uncalibrated or

calibrated. We describe these algorithms and discuss explainer algorithms used in the Intelligibility

Toolkit to explain these four variants of Linear SVMs.

B.14.1 BINARY NON-CALIBRATED LINEAR SVM

Even though linear SVMs use a different learning approach than linear or logistic regression (e.g.,

Sequential Minimal Optimization (SMO) [Platt, 1998]), it produces a linear decision boundary that

takes the same form, i.e.

 (B.68)

where is the functional output, is the value of the th input feature, is the learned weight of

the feature, and there are features. We can thus apply the same Weights of Evidence approach as

for Linear Regression to explain this linear decision boundary (Equation (B.56)).

 (B.69)

where .

B.14.2 BINARY PLATT-CALIBRATED LINEAR SVM

The simple linear SVM does not produce a probability output. Platt [1999] developed a calibration

method by fitting the SVM output to a logistic regression with the following model:

 (B.70)

where and is the learned coefficient and constant, respectively, and is the learned linear

model from Equation (B.68).

B.14 INTELLIGIBILITY TOOLKIT EXPLAINERS 301

Taking a logit transform on Equation (B.70) produces the similar expression as Equation (B.68) but

with a scaling factor and translation :

 (B.71)

where ,

B.14.3 MULTICLASS NON-CALIBRATED LINEAR SVM

We consider multiclass inference as done in the Weka toolkit for linear SVM. The number of votes

for the th class value is the sum of relevant pairwise classifiers that voted for the th class, i.e.,

 (B.72)

where is the SVM output of the pairwise classifier between and . when the pairwise

classifier votes for the th classifier, otherwise, it votes for the th classifier, indicates

where and are the original learned coefficients and constant from the pairwise classifier for

 .

302 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

We want to express the weights of evidence in terms of input features, . We can multiple

Equation (B.72) with the normalized sum of weights of evidence due to features:

 (B.73)

where and we denote the total evidence due to features as . This

represents the number value of rather than as a series expansion. Multiplying Equation

(B.72) with Equation (B.73) and rearranging, we get

 (B.74)

where

B.14.4 PAIRWISE COUPLING

Before we discuss multiclass calibrated linear SVMs, we discuss pairwise coupling, an important

method to support multiclass inference with binary classifiers.

Many inference models can only make classifications between two class values (e.g., Logistic

Regression, Support Vector Machines), but applications may want to infer over more than two value

(i.e., a multi-class problem). Several methods exist to help use binary classifiers (that deal with only

two values at a time) for multi-class problems. For example, one-vs.-all classifiers can be used to

infer over class values, and the value of the classifier with the highest certainty is chosen. An

alternative popular approach is to use Pairwise Coupling [Hastie and Tibshirani, 1998] that looks at

 one-vs.-one classifiers, and chooses the class value that is selected by the most classifiers. We

briefly introduce this algorithm in this section, and generate explanations for it. Refer to the original

paper for a more detailed discussion of the method.

For a multiclass problem with class values, consider a system of pairwise classifiers covering

all pairwise comparisons. We index these classifiers as representing the binary classifier that

B.14 INTELLIGIBILITY TOOLKIT EXPLAINERS 303

will infer the th class if the inference is positive, and the th class instead if the inference is

negative. For pairwise classifiers that are calibrated, we can denote the probability of inferring the

 th class instead of the th class with . These probabilities can be represented in a matrix:

 (B.75)

We wish to estimate the true probabilities for each class value, (estimated as) from this system

of pairwise comparisons. In terms of these true probabilities, the probability outcome of each

pairwise classifier can be modeled as:

 (B.76)

where is the observed (measured) pairwise classification probability, and is the model

(theoretical) pairwise probability. The Pairwise Coupling algorithm estimates by maximizing the

negative Kullback-Leibler distance between and the estimates of , notated as . converges

iteratively with:

 (B.77)

where is the weight for the th pairwise classifier. As shorthand, we drop the hat notation to

indicate the estimate:

 (B.78)

where is the minimized Kullback-Leibler distance between the estimate from

the observed . is a function of and its value varies for each inference. We assume is small,

but we want to retain this difference, because otherwise approximating it away can lead to

fallacious explanations.

304 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Rearranging Equation (B.76), we can derive an expression for in terms of the probability of

another class, :

(B.79)

Note that, unlike how the multinomial logistic regression deals with the multiclass problem. we do

not have an expression for independent of other classes. We therefore cannot derive a one-vs.-

none Weights of Evidence explanation, i.e.,

 (B.80)

However, we can derive one-vs.-one Weight of Evidence explanations, , about pairwise

comparisons. From this, we may derive the one-vs.-all explanation, . To derive an explanation

for why the th class was inferred over the th we start with the fact

Taking a log transforms gives us a logit expression in terms of :

 (B.81)

At this point, we can express a one-vs.-one Weights of Evidence explanation for the inference of th

class over the th class in terms of estimated pairwise classifier probability :

 (B.82)

where suggests some weight of evidence for .

B.14 INTELLIGIBILITY TOOLKIT EXPLAINERS 305

Note that this method is agnostic to the base pairwise classifier, so even a "black box" classifier can

be used.

 (B.83)

While we can generate explanations for the Pairwise Coupling step, we can leave the pairwise

classifier as unexplained, or explained as a separate layer. Fortunately, as long as the logit

expression can be expanded, we can provide closed explanation in terms of input features.

This is possible for multiclass SVMs, which we discuss next.

B.14.5 MULTICLASS PAIRWISE-COUPLED LINEAR SVM

Linear SVMs are often used for multi-class problems (i.e., where inferences need to be made over

 class values). To handle multiple class values, pairwise coupling [Hastie and Tibshirani, 1998]

can be used on all the pairwise classifiers. In fact, this is what the Weka toolkit uses for multi-class

SVMs. We have already described how to generate explanations of pairwise coupling of classifiers

in Section B.14.4. For the multiclass case, we express Equation (B.70) for each pairwise classifier,

with a change in notation and other additions of the subscripts:

 (B.84)

Similarly to Equation (B.71), the logit of Equation (B.84) is a linear expression:

 (B.85)

Equation (B.85) only provides the weights of evidence explanation for a single pairwise classifier. In

order to explain the overall inference, we seek to expand on Equation (B.82), noting that while

 , they are not equal (), and

(B.86)

We can address this discrepancy by treating it as a difference error or a scale error.

306 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.14.5.1 DISCREPANCY BY DIFFERENCE

By considering the discrepancy as a difference, we have:

(B.87)

Therefore, from Equation (B.82), we can produce the explanation:

 (B.88)

where

 is output from each pairwise classifier, and is estimated from the pairwise coupling method.

For each inference, the values of and are computed, so we can just use them as known values,

rather than functions in . Notice that is independent of for , but is dependent on

the test instance, , used for inference. Thus, we can call the evidence due to estimation.

Equation (B.88) reduces well to the binary class case:

where and , so .

This difference treatment may suffer from cases where the value of may be very large in

magnitude. We can ameliorate this issue by considering the discrepancy as due to scaling.

B.15 INTELLIGIBILITY TOOLKIT EXPLAINERS 307

B.14.5.2 DISCREPANCY BY SCALING

By considering the discrepancy as due to scaling, we have:

(B.89)

Therefore, from Equation (B.82), we can produce the explanation:

 (B.90)

where

B.15 NAÏVE BAYES EXPLAINER

The naïve Bayes classifier is a simple classifier that uses Bayes theorem to classify values. It

assumes that input features are conditionally independent of one another. Our explanation for

naïve Bayes inference is an extension of [Poulin et al. 2006] for multi-class problems. The posterior

probability that the th class is inferred () from a set of class values given the observed

instance input feature values :

 (B.91)

where is an input feature of possible values. We neglect the denominator term as it will cancel

out. The probability is calculated from the prior probability that a class would be in, , and the

conditional probabilities of each feature value given the class, .

308 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

For notation convenience, let us define

Then Equation (B.91) becomes

 (B.92)

Taking a log transform of Equation (B.92) gives the linear expression for the weights of evidence

explanation:

(B.93)

where .

B.16 HIDDEN MARKOV MODELS (HMM) EXPLAINER

A hidden Markov model (HMM) is a Bayesian network that models the probability of a sequence of

hidden states given a sequence of observations (input features with respect to time). First-order

Markov models assume that only the previous state affects the next, and only the current state

influences the current observation. For detailed information on HMMs, please refer to [Rabiner,

1989]. We can derive a weights of evidence explanation for HMMs in a similar manner as we did for

naïve Bayes.

B.16 INTELLIGIBILITY TOOLKIT EXPLAINERS 309

B.16.1 SINGLE OBSERVATION PER TIME STEP

We consider a sequence of length . The probability of inferring state (Output) sequence , given

the observation (Inputs) sequence is:

(B.94)

where is the prior probability that a state is , the transition

probabilities from state to , and the emission probabilities of the

observations given the state sequence.

Taking a log transform on Equation (B.94) gives the weights of evidence explanation:

(B.95)

where

B.16.2 OBSERVATION VECTOR PER TIME STEP

Next, we consider HMMs with observation vectors for each time step, specifically with input

features. At time step , the observation is . The probability of inferring state

sequence , given the observation sequence is:

(B.96)

310 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

To allow features to individually provide evidence, we need to make a naive assumption (similar to

what is done for naive Bayes) that the features are independent of one another given any state, i.e.,

 (B.97)

We define a new parameter for the HMM, , which is a naive emissions

probability matrix representing the probability of observing input value given hidden state .

This can be computed with a labeled training set.

Substituting Equation (B.97) into Equation (B.96) gives

 (B.98)

For notation convenience, we rewrite Equation (B.98) as:

 (B.99)

where

Taking a log transform on Equation (B.96) gives the weights of evidence explanation:

 (B.100)

where

So, with the naive assumption of independence among features, HMMs can be explained as the sum

of evidence of:

1. Prior probabilities of selected state, ()

B.17 INTELLIGIBILITY TOOLKIT EXPLAINERS 311

2. Weights of Evidence due to each state transition,

3. Weights of Evidence due to feature value at sequence step, ()

B.16.3 EXPLANATIONS REGARDING THE LAST TIME STEP

Even though the HMM will infer over a time sequence, end-users may be interested only in the last

time step. In this case, explanations will pertain to the various class values that the last state

may take. Given the inferred state sequence, , we consider the last state

inferred as the th class value, i.e., . We want to present the evidence for , .

given ; this explains the probability of inference, . To use the

same notation as non-time-based explainers, we also define . Fixing ,

Equation (B.100) becomes:

 (B.101)

where

Equation (B.101) presents the weights of evidence in two dimensions, time step and input features.

We can now use the techniques for non-time-based explainers to derive explanations for Why, Why

Not questions. However, each weights of evidence, , explains the conditional probability

 instead of .

B.17 DECISION STUMP EXPLAINER

A decision stump is one-level decision trees (i.e., the root and leaves) [Iba and Langley, 1992],

which uses a single input feature for inference. Decision stumps are typically used as part of an

ensemble classifier, such as AdaBoost. It infers a probability distribution over the class values.

312 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Denoting the selected feature as the th feature and the probability for inferring the th class value

as , the weights of evidence explanation is:

 (B.102)

where , and is the Kronecker delta notation.

This explainer algorithm is implemented in DecisionStumpExplainer.

B.18 DECISION TREE EVIDENCE EXPLAINER

Figure B.7. (Left) A decision tree illustrating probabilities at each node due to the probability

distribution in the training set satisfying the feature conditions, , at the node, and

conditional probabilities of each edge between nodes. (Right) Probabilities of nodes and

edges of the reasoning trace, assuming conditional independence between feature

conditions. Edge probabilities are used in the weights of evidence explanation.

We had previously considered the decision tree deterministically as a combination of rules. Here,

we want to consider it probabilistically, where its structure is due to statistical treatment of a

training set. This will allow us to produce a Weights of Evidence explanation of the trace, where we

attribute atomic weights of evidence to each decision condition in the reasoning trace. Given a trace

with conditions, we denote the th condition as . A condition may be an equality or inequality,

e.g., , , where refers to the th input feature.

P(Yi∩X1)

P(Yi)

Pi(¬X1)

Pi(X1∩¬X2)

P(X1|Yi) P(¬X1|Yi)

P(X2|Yi∩X1) P(¬X2)

P(Yi∩X1∩X2)

P(Yi)

P(Yi)

P(X1)

P(Yi) P(X1)P(X2)

P(Yi)

P(X2)

P(Yi)P(X1)

B.18 INTELLIGIBILITY TOOLKIT EXPLAINERS 313

A full trace is represented by the event

A learned decision tree encodes the probability distribution for inferring class values as the

probability distribution of the training instances at the leaf of the traced path in the tree. So the

probability of inferring the th class (event denoted as) is

 (B.103)

We will use the LHS notation for the rest of the working. We can similarly recover the probability of

inferring the th class for a pruned tree (i.e., a truncated reasoning trace). Consider the reasoning

trace truncated to the th node (condition). The probability of inferring the th class can be

computed as

 (B.104)

where

 is the number of training instances satisfying the condition

 and which

are labeled with the th class.

Note that this does not represent the atomic weight of evidence due to the condition . Instead, the

atomic weight is the probability of transition along the edge from to :

 (B.105)

Unfortunately, in this edge probability depends on , due to conditional dependence. However, if

we take assume conditional independence between , as is the case for naïve Bayes, then

 (B.106)

314 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Substituting Equation (B.119) into Equation (B.116) gives

 (B.107)

where is the prior probability for inferring the th class. can be

calculated from the distribution of the full training set.

Taking a log transform of Equation (B.120) gives the Weights of Evidence explanations of a

reasoning trace inferring the th class:

 (B.108)

where is the number of conditions in the trace, refers to the condition index in the trace,

With this derivation, we will be able to provide alternative explanations in terms of Weights of

Evidence, instead of Reasoning Traces. This can be particularly insightful for the Why explanation

by identifying factors that are more influential. However, it may not be as meaningful for Why Not

and How To explanations, since it provides less actionable information than reasoning traces.

This method produces a different explainer than the deterministic decision tree one. It generates a

Weights of Evidence instead of a Rule Trace explanation, and has corresponding explanations for

Why, Why Not and How To, for the specific rule trace that was traversed. Note that while the Rule

Trace explanation can cover multiple traces, the Weights of Evidence explanation only handles one.

Figure B.8and Figure B.9 describe the algorithm for preparing the probability distribution in

Equation (B.107).

B.18 INTELLIGIBILITY TOOLKIT EXPLAINERS 315

Figure B.8. Modified algorithm (of Figure B.5) to traverse the decision tree depth-first to

convert it into DNF and store class probability distributions of edge conditions.

Figure B.9. Algorithm that implements Equation (B.105) to calculate the class probability

probability at each edge transition in the decision tree.

EdgeProbabilities (,)

 For each class value index

 // implements Equation (B.105)

 Return P

 = root node of decision tree

 := condition literal representing edge from null to root node

 := new empty trace clause

 = map of DNFs of each class value // gets updated in TreetoDNF

TreeToDNF(, , , ,)

TreeToDNF(, , , ,)

 // compute edge probabilities from node probabilities; see Equation (B.105)

 = probability class distribution of parent node

 := read probability class distribution at current node

 := EdgeProbabilities(,)

 Store into

 If parent of for some // has child nodes

 = attribute described in

 For each child

 EdgeLiteral() // define condition literal to represent edge from to

 := Clone // duplicate trace to extend for each child path

 // append literal to trace clause

 TreeToDNF(, , , ,)

 Else // is a leaf

 // inferred class value

 // retrieve DNF that infers the th class

 // append trace clause to

316 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

This explainer algorithm is implemented in J48EvidenceExplainer. Furthermore, to support

weights of evidence explanations for the ensemble classifier RandomForest [Breiman, 2001], this

explainer algorithm is also implemented in RandomTreeExplainer to explain Random Trees.

B.18.1 WEIGHTS OF EVIDENCE OF INPUT FEATURES INSTEAD OF CONDITIONS

Equation (B.108) presents the weights of evidence explanation in terms of feature conditions of the

reasoning trace. This differs from other weights of evidence explainers (e.g., for linear SVM, logistic

regression, and naïve Bayes) because some input features may be omitted or may occur in multiple

feature conditions in the trace. Fortunately, we can still provide an explanation in terms of input

features by summing weights of evidence of each condition, , that has the same input

feature, :

 (B.109)

where

This formulation of the weights of evidence explanation in terms of input features will also be

useful when combining multiple explanations to explain an ensemble classification (see Section

B.20).

B.19 INTELLIGIBILITY TOOLKIT EXPLAINERS 317

B.19 K-NEAREST NEIGHBORS (KNN) EXPLAINER

The k-Nearest Neighbors algorithm (kNN) is an instance-based learning method that classifies

outcomes based on the instances in the training set that are “nearest” to the test instance, . These

training set instances are called neighbors, and we denote the th nearest neighbor as . The

distance between instances depend on the differences between each input feature value,

where is the value of the th input feature for the test instance, and is the value of the th

input feature for th neighbor.

The total distance over input features is calculated with a Distance function, , most typically

Euclidean or Manhattan,

M

Up to nearest neighbors that are selected will vote to assign the class value to the test instance

that matches the majority class value among the nearest neighbors. This depends on the Weighting

function,

Therefore, the probability for inferring the th class is

 (B.110)

where is a normalization constant, is the number of neighbors being considered for

classification, , and we use the Kronecker delta notation:

318 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

We can also represent the inference as

 (B.111)

where is the the set of neighbors labeled with the th class.

We would like to produce an explanation in terms of two dimensions: input features (),

and nearest neighbors (). We will first derive an explanation for several Distance

functions, and then for the Weighting functions, combining them into a single explanation

expression, rather than separated layers.

B.19.1 DISTANCE FUNCTIONS

To produce a Weights of Evidence explanation in terms of input features, we need to derive a linear

additive expression for the distances.

B.19.1.1 MANHATTAN DISTANCE

The Manhattan distance (also called Taxi-Cab distance) is a simplest distance function that takes

the L1-norm:

 (B.112)

where is the distance for the th input feature. This is already a linear additive

expression of feature differences.

B.19.1.2 EUCLIDEAN DISTANCE

The Euclidean distance is a common distance function used in kNN and it is also default in Weka. It

is an L2-norm non-linear expression in terms of input feature distances,

 .

To be able to express the Euclidean distance, , in terms of Weights of Evidence due to the distance

of each input feature, , we seek a linear approximation for the Euclidean distance. In the field of

computer graphics and engineering applications, Celebi, Celikerb, and Kingravi [2011] compared

several linear approximation methods for the Euclidean distance of arbitrary dimensions, and

found that although Barni et al.’s [1995; 2000] approximation was the most computationally

inefficient, it was the most accurate with the lowest maximum relative error (MRE). Since we are

B.19 INTELLIGIBILITY TOOLKIT EXPLAINERS 319

primarily interested in an accurate explanation than speed of computing it, we choose this

representation. For an Euclidean distance,

where represents the th orthogonal component distance, and represents the distance vector,

the approximation, , takes the linear form:

 (B.113)

where is a permutation of such that

(henceforth called value-ranked), and and are approximation parameters, estimated with:

These parameters are constant only depend on the number of input features, . The maximum

relative error (MRE) for this approximation is
 .

Hence, we can provide the explanation for Euclidean distance as linear approximation:

 (B.114)

where and .

B.19.1.3 FEATURE DISTANCES FOR NUMERIC AND CATEGORICAL FEATURES

Depending on the type of the input feature (numeric, normalized numeric, or categorical), distance

due to each input feature will differ:

 (B.115)

320 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

For normalization, Weka uses min-max normalization for its kNN implementation:

 (B.116)

Given the aforementioned linear expression for distance functions, we next turn our attention to

finding linear expressions for weighting functions.

B.19.2 WEIGHTING FUNCTIONS

We seek to derive linear expressions for in terms of distance and consequently get linear

expressions for weights of evidence in terms of feature distances:

(B.117)

where

 is the weighting function in terms of the distance and represents the

atomic weight of evidence. We derive explanations for three weighting functions (None, Similarity,

and Inverse).

B.19.2.1 NO WEIGHTING (NONE)

No weighting is done for this function, such that . So we get the weights of evidence:

(B.118)

This weighting function has no concept of explanation by input features.

B.19.2.2 SIMILARITY WEIGHTING

Similarity weights each farther nearest neighbor less with the function, . So we get the

weights of evidence:

B.19 INTELLIGIBILITY TOOLKIT EXPLAINERS 321

(B.119)

where

 .

B.19.2.3 INVERSE WEIGHTING

Similarity weights each farther nearest neighbor less with the function, . So we get a non-

linear expression for the weights of evidence:

(B.120)

where

.

To get the linear expression of Equation (B.117), we can consider a multivariate Taylor series

expansion to the first order. We neglect higher order terms to avoid cross products of terms and

maintain linear separability. We expand about the point for , and for some , where

 . A multivariate Taylor series expansion for gives the expression:

(B.121)

This expression is similar to weighting by similarity (Equation (B.119)), which we can replicate

with a simple scaling and translation, since and are constants:

Therefore, under approximation, we can use the same expression as a surrogate for explaining

inverse weighting as for similarity weighting.

322 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.19.3 WEIGHTS OF EVIDENCE FOR KNN

In summary, we can present the Weights of Evidence explanation as the linear additive expression:

 (B.122)

where

 M

† indicates approximations.

B.19.4 HOW TO EXPLANATIONS – NOT POSSIBLE

Since the classifier is built lazily by considering the test instance, it is not possible to provide this

explanation without a test instance from which to find neighbors. Furthermore, the explanation

expressions are not linearly expressed in terms of input feature values.

B.20 ENSEMBLE CLASSIFIER EXPLAINERS

To improve the classification accuracy of a single classifier, ensemble methods can be used where

multiple classifiers (henceforth called base classifiers) are combined to infer the class. We consider

the general case where base classifiers are used in an ensemble for inference. Many ensemble

classifiers make inferences through a linear combination of base classifications, i.e., the probability

of inferring the th class is

B.20 INTELLIGIBILITY TOOLKIT EXPLAINERS 323

 (B.123)

where is the probability of the th classifier inferring value , and is a normalization constant.

We wish to derive a weights of evidence expression in terms of weights of evidence of the base

explanation:

 (B.124)

where is the linearly separable weights of evidence expression of lower-level factors (e.g., input

features) and is a coefficient factor for the th base classifier.

B.20.1 NORMALIZATION OF WEIGHTS OF EVIDENCE OF BASE EXPLANATION

Rather than propagating the probability of inference from a base classifier, some ensemble

classifiers discretize classification results of the base classifier to 0 or 1. This discretization neglects

much information from the inference in the base classifier …

For base inferences that do influence the ensemble classification, we wish to present their weights

of evidence in a form normalized to 1. We do this with the expression:

 (B.125)

where is the linearly separable weights of evidence expression for the th base classifier and

 is the value of the total weights of evidence.

We can then explain the weights of evidence of the ensemble classification as:

 (B.126)

where is a coefficient factor for the th base classifier, which depends on the actual ensemble

classifier (see Section B.21 and B.22).

324 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.20.2 TRANSFORMATION-INDEPENDENT NORMALIZATION

If the base explainer formulates as a linear function of , i.e., and can be

formulated as a linear function of lower-level dimensions (e.g., input features), then can natively

present the Weights of Evidence in terms of those dimensions. This is the case for explanations of

Decision Stumps, Logistic Regression, binary linear SVM, and kNN.

However, some base classifiers require a transformation of to obtain as a linear additive

expression (e.g., explanations for naïve Bayes, HMM, and multiclass SVM require a log transform),

i.e.,

where is a non-linear isotonic (monotonic increasing) function of and transforms it into a

linear additive function. could typically be a or function.

Although preserves the relative ordering of the probabilities, i.e.,

generally, it does not preserve the relative scale between probabilities, i.e.,

We can mitigate this issue by scaling to preserve the scale relationships between iterations,

 (B.127)

where , is will be expanded to fully express the weights of evidence

for the one-vs.-none comparison, and is its value sum, the total weight of evidence.

The explicit value is obtained from the probability distribution at inference, so it is also

known. Note that even though the full dimensional weights of evidence is linearly additive, the

weights for the base classifier dimensions (e.g., input features) are actually in the transformed

space, unlike the weights for the iteration dimension which are in the untransformed space.

Consequently, the weights across dimensions are not strictly comparable, but this discrepancy may

be unimportant to lay end-user, and this scaling may provide a sufficiently reasonable explanation.

B.20 INTELLIGIBILITY TOOLKIT EXPLAINERS 325

Notice that even if is a linear transformation, the factor

 will not affect the relative

scale of probabilities between iterations, and will even normalize each to probabilities. So, we

can equally apply this scaling to all forms of .

B.20.3 BASE EXPLANATIONS BEFORE ENSEMBLE

Recall that some explainers do not provide a weights of evidence explanation , such that

(e.g., explanations for SVMs). In such cases, we will not be able to obtain an ensemble explanation

using Equation (B.126). First, we simplify Equation (B.126) to

 (B.128)

where we neglect weights of evidence of the lower-level dimensions in . Next, we consider the

weights of evidence explanation for a pairwise comparison, Equation (B.37):

 (B.129)

Similarly to Equation (B.125), we consider normalizing the weights of evidence for a pairwise

comparison:

 (B.130)

and substitute Equation (B.130) into Equation (B.129) to get a weights of evidence explanation for

pairwise comparison:

(B.131)

where

326 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

With Equation (B.129) we will still be able to generate Why and Why Not explanations. This

produces the explanation of the pairwise comparison of each base classifier, , and collates

them to produce the ensemble explanation. Since Equation (B.129) can be used more generally than

Equation (B.126), we shall use it to derive subsequent explanations for ensemble classifiers.

B.20.4 SINGLE TYPE OF BASE CLASSIFIERS

Single level why:

In Sections B.21 and B.22, we describe explainers for two popular ensemble classifiers, Bootstrap

Aggregation (Bagging) and AdaBoost.M1, respectively.

B.20.5 DIFFERENT TYPE OF BASE CLASSIFIERS

Some meta-classifiers (e.g., Democratic Co-Learning [Zhou and Goldman, 2004]) use base classifiers

of different types (e.g., decision tree, naïve Bayes, kNN). These can lead to some inconsistency

issues when generating a coherent weights of evidence explanation:

Number of dimensions of weights of evidence. Explainers may provide explanations in a

different number of dimensions. For example, the naïve Bayes explainer (Section B.15) provides

explanations only in terms of input features, , the kNN explainer (Section B.19) provides

explanations in terms of nearest neighbor and input features, , and the HMMs explainer (Section

B.16) provides explanations in terms of time step and input features, . One simple way to

standardize the number of dimensions is to just reduce the explanations to the dimension of input

features. This is done using the DimensionReducer reducer component (see Section 6.11.2) that

can collate weights of evidence to just the input feature dimension.

Dimension number space. Another issue is whether a non-linear transformation was used to

derive the weight of evidence explanation in a base explainer. For example, log transforms were

required for the naïve Bayes and decision tree explainers, and logit transforms were required for

the logistic regression and multiclass linear SVM explainers, but only a linear transform was

required for the kNN explainer. A consequence is the relative difference in magnitude of each

weight of evidence.

B.20 INTELLIGIBILITY TOOLKIT EXPLAINERS 327

Need to make each base classifier consistent in:

 Dimensions of weights of evidence

 Dimension space (e.g., whether log-transformed)

B.20.5.1 STANDARDIZATION OF BASE WEIGHTS OF EVIDENCE

Need to be more stringent than Equation (B.126). Other than just normalize the total weights of

evidence, we would like to normalize the spread of each weight of evidence. Equation (B.126)

makes the mean (average) of atomic weights of evidence equal to

. Furthermore, we assume that

each atomic weight of evidence will be of comparable magnitudes across classifiers. As such, the

mean and standard deviation of the weights of evidence follow the distribution

 . Consider

the th atomic weight of evidence, . The transformation for normalizing a distribution, , is

where is the average of the weights of evidence and is its standard deviation. Since we want to

normalize and then make the mean

, we use the transformation

Note that atomic weights that were originally zero will be biased toward a positive value.

We present the weights of evidence explanation as:

 (B.132)

where

328 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Due to the additional assumption of equal variance for atomic weights of evidence across base

explanations, we do not use this normalization technique for ensemble classifiers that use a single

type of base classifier.

B.21 BOOSTRAP AGGREGATION (BAGGING) EXPLAINER

Bootstrap aggregation (bagging) [Breiman, 1996] is an ensemble classification algorithm that can

improve the classification accuracy of base classifiers. It takes a training dataset, , and creates

new training sets by sampling examples from with replacement. This method is called boostrap

sampling. It then trains versions of the base classifier, one classifier for each new training set.

Overall inference is done by averaging the inference of each of the base classifiers:

 (B.133)

where is the probability of the th classifier inferring the th class, and is a normalization

constant.

Using Equation (B.126), we can express the weights of evidence for inferring the th class in terms

of classifiers:

 (B.134)

where is the linearly separable weights of evidence expression for the th base classifier and

 is the value of the total weights of evidence.

In terms of a pairwise classification, the weights of evidence explanation is:

 (B.135)

B.21 INTELLIGIBILITY TOOLKIT EXPLAINERS 329

To illustrate the atomic weights of evidence for several bagged classifiers, we work out their

expressions in the next sections, though they are automatically generated using Equation (B.134).

B.21.1 RANDOM FOREST (BAGGED RANDOM TREES)

Formatting the weights of evidence explanation for the Random Tree classifier within an ensemble

classification, Equation (B.109) becomes:

 (B.136)

where is the length of the inferred trace of the th classifier.

Substituting Equation (B.136) into Equation (B.134), we get

 (B.137)

where

B.21.2 RANDOM (BAGGED) NAÏVE BAYES

Formatting the weights of evidence explanation for naïve Bayes within an ensemble classification,

Equation (B.93) becomes:

 (B.138)

Substituting Equation (B.138) into Equation (B.134), we get

 (B.139)

where

330 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.21.2.1 BAGGED LINEAR SVM

Formatting the weights of evidence explanation for multiclass linear SVM within an ensemble

classification, Equation (B.90) becomes:

 (B.140)

where

Substituting Equation (B.140) into Equation (B.135), we get

 (B.141)

where

B.22 ADABOOST.M1 EXPLAINER

AdaBoost.M1 is the multiclass extension of Discrete AdaBoost [Freund and Shapire, 1996], and this

was extended for confidence-rated predictions in Real AdaBoost [Shapire and Singer, 1999]. We

will not cover in detail the algorithm, and defer the interested reader to the source papers.

AdaBoost.M1 defines the output inference of the meta-classification in terms of a weighted sum of

the output inferences of iterations of base classifier, i.e.,

 (B.142)

where represents the learned function of whether the th classifier iteration infers the th class

value, and is the learned weight for the th iteration.

B.22 INTELLIGIBILITY TOOLKIT EXPLAINERS 331

To obtain the probability distribution over class values, we will need to calibrate the output of the

boosted model (Equation (B.142)). Niculescu-Mizil and Caruana [2005] compared multiple

calibration methods, and found that a Logistic correction was more accurate than using the raw

weights, , because boosting can be viewed as an additive logistic regression model [Friedman,

Hastie, and Tibshirani, 2000]. This transformation applies an inverse logit transform (or expit or

sigmoid) and takes the form:

The Weka toolkit performs a simpler calibration by applying an exponential transform instead:

Similar to our previous treatments, our explanation will actually be about a monotonic transform

on the probability of inference, rather than the actual probability distribution.

The Weka implementation of AdaBoost.M1 takes another simplification by defining

 (B.143)

where we use the Kronecker delta notation where

Substituting Equation (B.143) into Equation (B.142) gives

 (B.144)

where is the set of iterations where the classifier inferred the th class value. This discards any

information we have regarding how underlying factors (e.g., input feature values, class values) that

influenced the base classifications. Nevertheless, this can help to simplify the explanations.

332 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Using Equation (B.126), we can express the weights of evidence for inferring the th class in terms

of iterations:

 (B.145)

where is the Weights of Evidence for a one-vs.-none comparison explanation of the base

classifier on the th iteration, and is the value of the total weights of

evidence. Notice that even if we had to transform to derive , this does not influence the

resultant explanation at this level, since the relative ranking of inferring each class is preserved.

Note that the iteration dimension may not be particularly informative, so this should be

aggregated away before presenting to the end-user.

In terms of a pairwise classification, the weights of evidence explanation is:

 (B.146)

where

To give an idea of what the atomic weights of evidence represent for several boosted classifiers, we

work out their expressions in the next sections, though they are automatically generated using

Equation (B.145).

B.22.1 BOOSTED DECISION STUMPS

Formatting the weights of evidence explanation for decision stumps within an ensemble

classification, Equation (B.102) becomes:

 (B.147)

where is the th input feature of the th classifier, is the input feature selected for inference, and

 indicates that .

B.22 INTELLIGIBILITY TOOLKIT EXPLAINERS 333

Substituting Equation (B.147) into Equation (B.145), we get

 (B.148)

where

B.22.1.1 BOOSTED DECISION TREE

Formatting the weights of evidence explanation for the Decision Tree classifier within an ensemble

classification, Equation (B.109) becomes:

 (B.149)

where is the length of the inferred trace of the th classifier.

Substituting Equation (B.149) into Equation (B.145), we get

 (B.150)

where

334 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.22.1.2 BOOSTED KNN

Formatting the weights of evidence explanation for the kNN classifier within an ensemble

classification, Equation (B.122) becomes:

 (B.151)

where

 M

Substituting Equation (B.151) into Equation (B.145), we get

 (B.152)

where

B.23 ENSEMBLE DECISION TREES RULE TRACES EXPLAINER

Given the popularity of using decision trees in ensemble classifiers [?], we can present richer

explanations of an ensemble of decision trees, where for each inference, there is a trace for each

decision tree.

B.23 INTELLIGIBILITY TOOLKIT EXPLAINERS 335

Extending Equation (B.11)

(B.153)

where

Note that each trace, , may be of different length.

336 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.24 SUMMARY OF EXPLAINERS FOR INFERENCE MODELS

We summarize the two main types of explainers: Rule Trace and Weights of Evidence.

B.24.1 DNF RULE TRACE EXPLAINER

These explainer methods apply to Rules and Decision Trees after conversion to disjunctive normal

form (DNF). We store rules as DNF trees, and separate based on which class value they infer. These

DNF trees are stored in a map of DNF trees:

where

 is the DNF tree of traces that infer the th class

 is a trace consisting of conditions

Explanation Types Rule Trace Explanations

Why

where

 is whether trace is satisfied by inputs

Why Not

where

How To

B.24 INTELLIGIBILITY TOOLKIT EXPLAINERS 337

B.24.2 WEIGHTS OF EVIDENCE EXPLAINERS

Explanation Types Rule Trace Explanations

Why So

(Absolute Why)

where is the th atomic weight of evidence that votes for the th class of the set of
all atomic factors, .

Why Not

(Pairwise
Comparison)

where is the pairwise weight of evidence for inferring the th instead of the th

class.

For explainers where is defined,

Why Best

(Relative Why)

where weights of evidence consists of an extra dimension due to class value .

How To Depends on inference model

The following table describes how to generate the weights of evidence expression for specific

inference models.

Inference Model Weights of Evidence Explanations

Functional
Regression

Linear Regression

where

Function
Classifica-
tion

Multinomial
Logistic Regression

where

338 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Inference Model Weights of Evidence Explanations

Uncalibrated
Multiclass Linear
SVM

where

Pairwise-coupled,
Platt-calibrated
Multiclass Linear
SVM

where

By Difference By Scale

Multiclass
Quadratic SVM

where

Bayesian Naïve Bayes

where

B.24 INTELLIGIBILITY TOOLKIT EXPLAINERS 339

Inference Model Weights of Evidence Explanations

Hidden Markov
Models
(HMM)

where

Naïve HMM model,

Decision
Tree

Probabilistic
Decision Tree

where indexes the trace node, rather than input feature,

where

Similarity k-Nearest
Neighbors (kNN)

where

 M

 normalized

For Euclidean distance, input feature ordered where is a permutation

of such that

340 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Inference Model Weights of Evidence Explanations

Ensemble Bootstrap
Aggregation
(Bagging)

where defined by base classifier, represents the value of
the evidence (i.e., total evidence).

AdaBoost.M1

where defined by base classifier.

341

C HELLO WORLD TUTORIAL FOR

INTELLIGIBILITY TOOLKIT

This tutorial is an adaptation of the tutorial at http://www.contexttoolkit.org/?p=197 about how to

add intelligibility to an existing context-aware application, HelloRoom. See the tutorial at

http://www.contexttoolkit.org/?p=50 to learn how to build that application with the Context

Toolkit.

This tutorial describes how to make a context-aware application intelligible, such that it can

explain, what it did, why, and how it works. We will be using the components of the Intelligibility

Toolkit. We will extend the HelloRoom context-aware application to make it provide explanations.

Why Not explanation What If explanation

Figure C.1. Screenshots of the Hello Room application showing some explanations.

http://www.contexttoolkit.org/?p=197
http://www.contexttoolkit.org/?p=50
http://www.contexttoolkit.org/?p=50
http://kettle.ubiq.cs.cmu.edu/~contexttoolkit/wp-content/uploads/2010/12/helloroom-intelligible-whynot.png
http://kettle.ubiq.cs.cmu.edu/~contexttoolkit/wp-content/uploads/2010/12/helloroom-intelligible-whatif.png

342 APPENDIX C | HELLO WORLD TUTORIAL FOR INTELLIGIBILITY TOOLKIT

We will be reusing the classes we had defined in the HelloRoom tutorial, and extending the main

application class, HelloRoom, with HelloRoomIntelligible:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

public class HelloRoomIntelligible extends HelloRoom {

/** Intelligibility UI */

protected JPanel iui;

 public HelloRoomIntelligible() {

 super();

 // set new UI component

 iui = new IntelligibleUI(enactor);

 iui.setVisible(false);

 }

 @Override

 public void enactorsReady() {

 super.enactorsReady();

 iui.setVisible(true);

 }

 ...

}

We retain the original HelloRoomUI panel that contains the GUI elements to change brightness and

presence, and see the corresponding change in light level. We add IntelligibleUI to provide a

JPanel to show GUI elements for asking for and viewing explanations. We override

enactorsReady() to also set this to be visible only when the enactors are ready. It is in the

implementation of IntelligibleUI that we will employ the various components of the

Intelligibility Toolkit.

http://www.contexttoolkit.org/?p=50
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/apps/demos/helloroom/HelloRoomIntelligible.html

B.24 SUMMARY OF EXPLAINERS FOR INFERENCE MODELS 343

1

2

3

4

5

6

7

8

9

10

11

12

13

public class IntelligibleUI extends JPanel {

 // ... instance fields

 public IntelligibleUI(final Enactor enactor) {

 super();

 setLayout(new BorderLayout());

 setBorder(BorderFactory.createTitledBorder("Explanations"));

 ...

 }

}

For the rest of the code in the constructor, we set up the components for the intelligibility features:

1

2

3

4

5

6

7

8

9

10

11

12

13

// UI for obtaining queries from the user

queryPanel = new QueryPanel(enactor, true);

add(queryPanel, BorderLayout.NORTH);

// reducer for showing only brightness and presence in explanations

creducer = new FilteredCReducer("brightness", "presence", "light");

// presenter for rendering explanations

presenter = new StringPresenter(enactor);

// UI for showing explanation

explanationArea = new JTextArea();

add(explanationArea, BorderLayout.CENTER);

We use the utility class QueryPanel provided in the toolkit to get a JPanel that provides a GUI for

getting a Query from the user. We then create a conjunction reducer, FilteredCReducer, to

simplify explanations that will be generated from the query. This particular reducer only provides

explanations about the attributes with names from the array {“brightness”, “presence”, “light”}. We

instantiate StringPresenter, a simple Presenter to render explanations into a String

representation. Finally, we create a GUI text area to show the explanation in. This will be populated

when an explanation is generated.

Next, we need to listen for when queries are created by the QueryPanel, and we do this by adding

a QueryListener which implements queryInvoked(Query):

http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/query/Query.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/reducers/FilteredCReducer.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/presenters/StringPresenter.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/query/QueryListener.html

344 APPENDIX C | HELLO WORLD TUTORIAL FOR INTELLIGIBILITY TOOLKIT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

queryPanel.addQueryListener(new QueryListener() {

 @Override

 public void queryInvoked(Query query) {

 // generate explanation

 Explanation explanation = enactor.getExplainer().getExplanation(query);

 System.out.println("explanation = " + explanation);

 // reduce

 explanation = creducer.apply(explanation);

 // render

 String explanationText = presenter.render(explanation);

 explanationArea.setText(explanationText);

 }

});

Here, we take the Query that is passed and put it into an Explainer to get and Explanation. All

Enactors come with a default Explainer depending on their underlying model. The content of the

explanation is an Expression in Disjunctive Normal Form (DNF), and this is often overly

complicated for end-users to interpret. So we apply our previously instantiated reducer to reduce

the explanation. With the final form of the explanation, we can render it to human-readable form

with our presenter to get an explanation text, which we display in the text area.

So that is all that is needed to add intelligibility capabilities to the HelloRoom application. The final

step is just to launch the application in a JFrame:

http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/Explainer.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/Explanation.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/expression/Expression.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/expression/DNF.html

B.24 SUMMARY OF EXPLAINERS FOR INFERENCE MODELS 345

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public static void main(String[] args) {

 ContextModel.startDiscoverer();

 HelloRoomIntelligible app = new HelloRoomIntelligible();

 app.start();

 JFrame frame = new JFrame("Hello Room Intelligible");

 frame.add(app.ui, BorderLayout.NORTH);

 frame.add(app.iui, BorderLayout.CENTER);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(new Dimension(320, 360));

 frame.setLocationRelativeTo(null); // center of screen

 frame.setVisible(true);

}

Source code for this tutorial is provided with the Context Toolkit distribution with the source code

for HelloRoom.

http://code.google.com/p/contexttoolkit/source/browse/trunk/src/context/apps/demos/helloroom/HelloRoomIntelligible.java

347

D LAΚSA INFERENCE MODELS

This appendix describes the reasoning and inference models used in Laκsa (Chapter 7) and Laκsa2

(Chapter 9).

D.1 AVAILABILITY

Laκsa infers the user’s availability by applying rules (e.g., see Personal Availability Rules in

Appendices E.1 and Rules in I.1) based on lower-level contexts. Multiple rules may be triggered

simultaneously, prioritized by availability from Unavailable first and Available last.

D.2 PLACE

Laκsa infers whether the user is at a particular Place (denoted by semantic name, e.g., Home, Office)

by sensing the following attributes through:

 Measuring the user’s location Coordinates (Latitude, Longitude) via GPS or Network

on the Android phone,

 Estimating the Accuracy of the location fix as returned by Location.getAccuracy(),

 Retrieving Places that the user had saved and which are near to the coordinates; these are

modeled as circular regions (“bubbles”) with center position selected by the user (e.g., via a

map interface) and radius as defined by the user.

In Laκsa (version 1), the user’s location is modeled as a circular region “bubble” with the

Coordinates as its center and the Accuracy as its radius. We define this as the “user bubble” and the

circular region for a Place as the “place bubble.” The user is inferred at a Place if the user bubble

overlaps with the place bubble (see Figure D.1).

348 APPENDIX D | LAΚSA INFERENCE MODELS

Figure D.1. Bubbles model used in Laκsa of the sensed user location and three semantic

places A, B, and C. This indicates that the user is inferred at A because of the overlap.

In Laκsa2, the user bubble is defined as a Gaussian area, where we have interpreted the location

Accuracy as the 50% circular error probability (CEP)7,8 [CEP]. This indicates the circular region

within which there is a 50% probability the user is located. By mapping the location accuracy to

50% CEP, we can model the Gaussian area and derive the accuracy bounds for other CEP values

(see Figure D.2).

Figure D.2. Bubbles model used in Laκsa2 of the sensed user location and three semantic

places A, B, and C. The user location is modeled as a Gaussian area from the location

coordinates. Concentric circles indicate location accuracy bounds for: 15%, 50%, 95%,

99.9% CEP. This indicates that the user is inferred at A (most likely) followed by B, because

of the relative amounts of overlapping areas.

We can also determine the inference certainty of the user being at various places by calculating the

area overlap of the user Gaussian area with the place circle. For simpler computation on a mobile

phone, Laκsa2 approximates the Gaussian area as four concentric rings, representing 15%, 50 – 15

= 35%, 95 – 50 = 45%, 99.9 – 95 ≈ 5% probability of the user being each ring, respectively.

7
 Circular Error Probable. http://en.wikipedia.org/wiki/Circular_error_probable. Retrieved 27 April 2012.

8
 GPS Accuracy. http://www.kowoma.de/en/gps/accuracy.htm. Retrieved 27 April 2012.

Place
B

User
Location

Place
C

Place
A

15%

50%

95%

99.9%

Place
A

Place
B

Place
C

http://en.wikipedia.org/wiki/Circular_error_probable
http://www.kowoma.de/en/gps/accuracy.htm

D.3 SOUND ACTIVITY 349

D.3 SOUND ACTIVITY

Laκsa infers sound activity by

1. Sampling from the microphone signal,

2. Extracting features from the signal, and

3. Applying machine learning to distinguish between different types of sound

We perform sampling and feature extraction using the methods similar to similar to SoundSense

[Lu et al., 2009]. However, the inference uses the simpler naïve Bayes classifier which is explainable

with the Intelligibility Toolkit.

D.3.1 AUDIO SAMPLING FROM MICROPHONE

Figure D.3. Sampling of audio signal partitioned into Windows and Time Frames.

D.3.1.1 TIME SERIES SAMPLING

Laκsa samples the audio signal at a rate of 8000 samples/sec in time windows of 1.6 seconds. After

which, the sample is pre-processed to extract features and classification for sound inference is

performed. Each window is divided into 25 time frames (see Figure D.3) each of duration 64 ms and

containing 512 samples. For each time frame, we denote the th sample as . Independent of CPU

time for feature extraction and classification, Laκsa requires at least 1.6 seconds to sample the

audio. Table D.2 summarizes the sampling characteristics for audio.

Time Frame

Window

350 APPENDIX D | LAΚSA INFERENCE MODELS

D.3.1.2 FAST FOURIER TRANSFORM TO OBTAIN FREQUENCY SPECTRUM

We perform a Fast Fourier Transform (FFT) to obtain spectral information of the signal. Without

going into details, the transformation produces:

 (D.1)

where is a complex number representing the th bin in the frequency series,

 is its real component and is its imaginary component. Note that the

frequency series is only half as long () as the time series because the latter consists of only

real numbers and the frequency series is consequently symmetric.

By considering the FFT output of complex numbers, we can calculate the amplitude and phase of

each frequency bin:

Frequency amplitude:

Frequency phase:

For spectral features, we normalize the amplitudes of each frequency bin:

 .

The characteristics9 of the frequency spectrum is summarized in Table D.2.

Domain Characteristic Formula Value

Time
Series

Sampling rate 8000 samples/sec

Sample duration (time frame length) 0.064 sec (64 ms)

Number of samples 512 samples

Number of time frames / window 25 frames/window

Window length 1.6 sec

Frequency Number of bins 256 bins

Maximum resolvable frequency 4000 Hz

Frequency Resolution 15.625 Hz

Table D.1. Sampling characteristics from the audio signal.

9
 FFT Fundamentals. http://zone.ni.com/reference/en-XX/help/372416B-01/svtconcepts/fft_funda/. Retrieved 28

April 2012.

http://zone.ni.com/reference/en-XX/help/372416B-01/svtconcepts/fft_funda/

D.3 SOUND ACTIVITY 351

D.3.2 FEATURES EXTRACTED FROM AUDIO SIGNAL

Laκsa extracts several features from the audio signal by counting and statistical measures from the

sample measures of time frames and the window. Several features are based on time series data,

while others are based on the FFT spectrum.

D.3.2.1 POWER

Power, , is a time frame measure which indicates the energy per unit time in the audio signal. This

can be represented as the root mean square (RMS), , of the signal in the time frame or

alternatively represented in a decibel scale. We use the dBFS10 scale calibrating

 to as the maximum value and mapping to . Note that we

cannot use to calibrate the dB scale, since the log is asymptotic. In Android, the audio

signal is read as an array of short numbers, so the maximum signed value is . The

power of the audio signal for the time frame is:

 (D.2)

where

We define , such that

Since Power is a time frame measure, for frame , we denote its power as .

D.3.2.2 LOW-ENERGY FRAME RATE

Low-Energy Frame Rate (LEFR) is a window measure which indicates the proportion of time

frames with energy (power) less than half of the mean energy for all time frames in the window. A

higher LEFR value indicates more frames that have low energy compared to the whole window.

Speech typically has high LEFR values because of pauses between words. LEFR is calculated as:

10

 Decibels relative to Full Scale [Price, 2007]

352 APPENDIX D | LAΚSA INFERENCE MODELS

 (D.3)

where

 is the mean power in the window, and

 , where we use the Kronecker delta

D.3.2.3 ZERO CROSSING RATE

Zero Crossing Rate (ZCR) is a time frame measure which indicates the number of times the signal

crosses the zero value. A crossing is measured when consecutive samples have different signs, i.e.,

 . We calculate ZCR as:

 (D.4)

D.3.2.4 SPECTRAL FLUX

Spectral flux (SF) is a spectral time frame measure indicating the variability of the frequency profile

between consecutive frames. For the th time frame in the window, its spectral flux is:

 (D.5)

where is the normalized amplitude of the th frequency bin of the th time frame.

D.3.2.5 SPECTRAL ROLLOFF

Spectral rolloff (SRF) is a spectral time frame measure indicating the frequency at which a high

threshold of the spectrum energy is below.

 (D.6)

where is the frequency of the th bin. For Laκsa, we chose as 93% as the threshold, similar to

SoundSense [Lu et al., 2009].

D.3 SOUND ACTIVITY 353

D.3.2.6 SPECTRAL CENTROID

Spectral Centroid (SC) is a spectral time frame measure indicating the “middle” of frequencies in the

spectrum in the time frame:

 (D.7)

where we also denote the centroid with .

D.3.2.7 BANDWIDTH

The Bandwidth, , is a spectral time frame measure which indicates the “spread” of salient

frequencies in the time frame:

 (D.8)

where is the spectral centroid and is the frequency resolution.

D.3.2.8 NORMALIZED WEIGHTED PHASE DETECTION

Normalized Weighted Phase Detection (NWPD) is a spectral time frame feature which considers the

extent that all frequencies are in phase; if they are very out of phase, then they will destructively

interfere with one another and reduce the energy of the signal. We calculate NWPD as:

 (D.9)

where

 is the second derivative of the phase of the th frequency bin.

D.3.2.9 RELATIVE SPECTRAL ENTROPY

Relative Spectral Entropy (RSE) is a spectral time frame indicating how the ‘shape’ (entropy) of the

spectrum changes over time; it helps to differentiate speech from other sounds. We calculate it as:

354 APPENDIX D | LAΚSA INFERENCE MODELS

 (D.10)

where is the mean amplitude across time frames of the th frequency bin for the th time

frame, which we approximate only with the current and previous amplitudes:

D.3.2.10 MEL-FREQUENCY CEPSTRAL COEFFICIENTS

Mel-Frequency Cepstral Coefficients (MFCCs) are features further extracted from the FFT spectrum

which are popular for speech and speaker recognition. These coefficients can be derived from the

following procedure (adapted from [Crittenden and Evans, 2008]):

1. Take the FFT of a time frame of the signal to get the FFT spectrum.

2. Define a set of triangular overlapping filters in the mel frequency scale to quantify the

power (energy) in various regions of the spectrum. This produces a set of mel ‘bins’.

3. Take the logs of powers at each filtered region.

4. Take the Discrete Cosine Transform (DCT) of the log mel powers, as if the mel bins

represent a signal. The result is a cepstrum.

5. The MFCCs are the amplitudes of the resulting cepstrum.

The mel frequency scale represents how people perceive sound frequency linearly with respect to

mel frequency. Frequency can be transformed to the mel scale with:

 (D.11)

Note that the maximum resolvable frequency is 4000 Hz which is Nyquist frequency given the

sampling rate of 8000 samples/sec. The maximum mel frequency is thus mel.

Rather than transform the frequency spectrum into mel frequency, we can alternatively first define

the triangular overlapping windows which we will use to filter the spectrum, inverse transform

them into the frequency domain:

 (D.12)

D.3 SOUND ACTIVITY 355

For Laκsa, we use triangular filters to measure the power in various regions in the spectrum

uniformly distributed along mel scale (see Figure D.4).

Figure D.4. Triangular overlapping filters applied to the frequency spectrum: symmetric in

the Mel Frequency domain (Left) and distorted in the Frequency domain (Right).

In the mel frequency domain, the mid-point (apex) of each th triangular filter is evenly spaced, i.e.,

 (D.13)

In the frequency domain, the th triangular filter is defined as:

 (D.14)

where is the frequency variable, depends on , is the middle of the th triangular

filter defined by substituting Equation (D.13) into Equation (D.12), and the slope

.

The power of the th filtered window is a discrete sum of weighted (filtered) frequency bins:

 (D.15)

Next, we scale these powers by performing a log tansform:

 (D.16)

0

1

0 500 1000 1500 2000

Mel Frequency (mel)

0

1

0 1000 2000 3000 4000

Frequency (Hz)

356 APPENDIX D | LAΚSA INFERENCE MODELS

Finally, we take the Discrete Cosine Transform (DCT) of all filtered and log powers to obtain the

MFCCs:

 (D.17)

where represents the th Mel-Frequency Cepstral Coefficient, and for use in Laκsa.

The resultant cepstrum with MFCCs as coefficients characterize the spectral nature of the FFT

spectrum.

D.3.2.11 SUMMARY OF INPUT FEATURES

Table D.2 summarizes the input features extracted for Sound inference.

Feature Pretty Name Icon Conversion / Transformation Units

Power Volume 0 to 100

Low-Energy Frame Rate W Periods of Silence percent %

Bandwidth P Pitch Range Hz

Spectral Flux Pitch Fluctuation Hz/sec

Relative Spectral Entropy Pitch Purity bits

Zero Crossing Rate Remaining Factors

Spectral Rolloff P

Spectral Centroid P

Normalized Weighted
Phase Detection

MFCCs 0 to 11

Table D.2. Summary of input features for Sound inference with simplified names,

transformations, and units used in explanations to end-users. W Low-energy frame rate is a

window feature where we only measure counts; all other features are time frame features

where we measure both Means and Standard Deviations across time frames within the

window. P Spectral Centroid, Bandwidth, and Spectral Rolloff were aggregated in Laκsa with

the pan-flute visualization (see Figure 7.3c), but were separated for Laκsa2.

D.3 SOUND ACTIVITY 357

D.3.3 MACHINE LEARNING TO INFER SOUND ACTIVITY

Feature Measure Speech Music Ambient

Power Mean High High Low

SD

Low-Energy Frame Rate Count High Low Low

Zero Crossing Rate Mean

SD High Usually Low Low

Spectral Flux Mean High Usually Low

SD

Spectral Rolloff Mean Low High Low

SD

Spectral Centroid Mean Low High Low

SD

Bandwidth Mean Low High Low

SD

Normalized Weighted
Phase Detection

Mean High Low Low

SD

Relative Spectral Entropy Mean High Low Low

SD

Mel-Frequency Cepstral
Coefficients (0 to 11)

Mean

SD

Table D.3. Summary of input features for Sound inference and expected values for different

class values (Speech, Music, and Ambient Noise).

Currently, Laκsa and Laκsa2 use the naïve Bayes classifier to infer three types of sound:

 Talking

 Music

 Ambient Noise

Note that the classifier was not trained to be particularly accurate, since the scenarios used in the

user studies (Chapters 7 and 9) tested failure cases.

Why and Why Not explanations of Sound inference are generated using NaiveBayesExplainer

and presented as Weights of Evidence bar chart visualizations. Inputs explanations are presented

358 APPENDIX D | LAΚSA INFERENCE MODELS

by describing the values of the input features with their pretty names and units. Description

explanations are used to describe and explain the concepts relevant for each input feature.

D.4 MOTION ACTIVITY

Laκsa infers motion activity by

1. Sampling from the tri-axial accelerometer signals,

2. Extracting features from the signal, and

3. Applying machine learning to distinguish between different types of motion

We perform sampling and feature extraction using the methods similar to similar to [Bao and

Intille, 2004; Lester, Choudhury, and Borriello, 2006] with a focus on using intelligible features.

However, the inference uses the simpler J48 Decision Tree classifier which is explainable with the

Intelligibility Toolkit.

D.4.1 MOTION SAMPLING FROM ACCELEROMETER

Figure D.5. Sampling of an accelerometer signal partitioned into a Window for sampling.

D.4.1.1 TIME SERIES SAMPLING

Laκsa samples three signals of the tri-axial accelerometer at a rate of 20 samples/sec in time

windows of 6.4 seconds to measure 128 samples (see Figure D.5). We denote the th sample in the

window as for a generic signal. We measure three signals representing linear acceleration (, ,

) and calculate three other signals representing angular orientation (, ,). Independent of CPU

time for feature extraction and classification, Laκsa requires at least 6.4 seconds to sample the

accelerometer. Table D.4 summarizes the sampling characteristics for audio.

Window

D.4 MOTION ACTIVITY 359

D.4.1.2 FAST FOURIER TRANSFORM TO OBTAIN FREQUENCY SPECTRUM

Similarly to how we pre-processed the audio signal for Sound inference, we perform a Fast Fourier

Transform (FFT) to obtain spectral information of the signal, :

 (D.18)

where is a complex number representing the th bin in the frequency series,

 is its real component and is its imaginary component. For Motion, we

compute the spectra for six signals: linear acceleration (, ,) and angular orientation (, ,).

By considering the FFT output of complex numbers, we can calculate the amplitude of each

frequency bin:

Frequency amplitude:

We use the frequency spectrum primarily to model motion instead of stationary orientation, so we

normalize the DC component () to 0, i.e., .

The characteristics of the frequency spectrum is summarized in Table D.4.

Domain Characteristic Formula Value

Time
Series

Sampling rate 20 samples/sec

Sample duration (time frame length) 6.4 sec

Number of samples 128 samples

Frequency Number of bins 64 bins

Maximum resolvable frequency 10 Hz

Frequency Resolution 0.15625 Hz

Table D.4. Sampling characteristics from each accelerometer signal.

D.4.2 FEATURES EXTRACTED FROM THE ACCELEROMETER

Laκsa extracts several features from the tri-axial accelerometer signal using statistical measures

from the time series data and the FFT spectrum.

360 APPENDIX D | LAΚSA INFERENCE MODELS

D.4.2.1 3D LINEAR ACCELERATIONS

The raw signal value, at time , from the phone’s accelerometer represents the acceleration in three

dimensions:

 (D.19)

This constitutes the basis for many of the subsequent features for recognizing motion. For each

linear signal, we measure their means and standard deviations over the sample time:

 (D.20)

Diagrammatically, with respect to the phone, its , , and axes are:

 Axis Axis Axis

Direction of positive
acceleration

Direction of positive
acceleration

Direction of positive acceleration

(two views)

D.4.2.2 3D ANGULAR ORIENTATION

The accelerations can also be considered in angular frames instead of linear frames. If we assume

no or minimal actual motion, then the angular information from the accelerations can be

interpreted as the static orientation of the phone:

D.4 MOTION ACTIVITY 361

 (D.21)

Diagrammatically, with respect to the phone, its yaw, roll, and pitch are:

Yaw Roll Pitch

Rotation in plane,

about axis

Rotation in plane,

about axis

Rotation in plane,

about axis

For each angular orientation, we measure their means and standard deviations in the window time:

 (D.22)

D.4.2.3 CORRELATIONS BETWEEN LINEAR ACCELERATIONS AND ANGULAR ORIENTATIONS

We compute the correlations between linear accelerations and between angular components:

 (D.23)

362 APPENDIX D | LAΚSA INFERENCE MODELS

D.4.2.4 DEVIATION OF ACCELERATION FROM 1G

We define a variable to potentially indicate whether the phone is stationary or in motion:

 (D.24)

where

 is the magnitude of the acceleration vector and m/s2 is

the constant of 1 G acceleration. If there is absolutely no motion in the phone, e.g., it is resting flat

on a table, then G and , i.e.,

Note that there may be certain cases when the phone is in motion and .

D.4.2.5 POWER (ENERGY PER UNIT TIME)

Taking the square of amplitudes in the frequency (FFT) spectrum, we can power spectral density

(PSD) of the signal, :

 (D.25)

where
2 is the power of the th frequency bin. The area under the PSD curve represents the

energy in the signal over the sampling time (window length). To get the average power over time,

we divide by the window length (as was done in [Bao and Intille, 2004]). The average, normalized

power for each signal is:

 (D.26)

computed for six signals: linear acceleration (, ,) and angular orientation (, ,).

D.4.2.6 MODAL AND MEAN FREQUENCIES

For each signal, we compute the mean frequencies:

 (D.27)

D.4 MOTION ACTIVITY 363

and modal frequencies:

 (D.28)

computed for six signals: linear acceleration (, ,) and angular orientation (, ,).

D.4.2.7 SPECTRAL ENTROPY

Spectral Entropy (SE) indicates the shape of the frequency spectrum:

 (D.29)

computed for six signals: linear acceleration (, ,) and angular orientation (, ,). Spectral

Entropy may indicate whether a particular frequency has high amplitude while most others have

low amplitude (e.g., when cycling at a constant speed).

D.4.2.8 SUMMARY OF INPUT FEATURES

Table D.5 summarizes the input features extracted for Motion inference.

Feature Pretty Name Icon Conversion Units

 power
Movement Vigorousness
(Up/Down) Watts

 power
Movement Vigorousness
(Rotation) Watts

 Amount of Movement (Sideways) Inches ″

 pitch (Std. Dev.) Amount of Movement (Rotation) Degrees °

 acceleration (Mean) -Force

 G (=9.81m/s2) acceleration (Mean) -Force

 acceleration (Mean) -Force

 yaw (Mean) Rotation Also shown as a
physical diagram
of the phone’s
orientation (see
Figure 7.3b).

 Degrees ° roll (Mean) Rotation

 pitch (Mean) Rotation

Other features were not shown in explanations to users.

Table D.5. Summary of input features in Laκsa2 for Motion inference with simplified names,

transformations, and units used in explanations to end-users.

364 APPENDIX D | LAΚSA INFERENCE MODELS

D.4.3 MACHINE LEARNING TO INFER MOTION ACTIVITY

Currently, Laκsa and Laκsa2 use the J48 Decision Tree classifier to infer seven types of motion:

 Sitting

 Standing

 Walking

 Running

 Cycling

 Holding

 'Flat Surface' (e.g., lying on a table)

Note that the classifier was not trained to be particularly accurate, since the scenarios used in the

user studies (Chapters 7 and 9) tested failure cases.

Why and Why Not explanations of Motion inference are generated using J48RuleTraceExplainer

and presented as inequalities (rule trace explanations). Inputs explanations are presented by

describing the values of the input features with their pretty names and units. Description

explanations are used to describe and explain the concepts relevant for each input feature.

 365

E LAΚSA EXPERIMENT MATERIALS

This appendix describes the experimental materials used in the user study described in Chapter 7.

E.1 PARTICIPANT REFERENCE SHEET

Cheat sheet that participants can carry around as they performed activities during scenarios in the

experiment.

366 APPENDIX E | LAΚSA EXPERIMENT MATERIALS

Personal Availability Rules

Availability Location Motion Sound Ringer Schedule
 Who’s

Enquiring

Unavailable

Office

Silent

Anyone

Unavailable

Office

Talking

 Anyone

Unavailable

Work Friends

Semi-Available Library

Anyone

Semi-Available

Home

Coworkers

Semi-Available

Cycling

 Anyone

Available

All other cases

Explanation Types

1. What is the value of the aspect?

2. When did this aspect change to this value?

3. Why is this aspect the current value? (This refers to the logic or method that Laksa used)

4. Why isn’t this aspect an alternative value?

5. When would (under what situations or circumstances) this aspect?

6. What else can this aspect be? (What other values can it take?)

7. What details affect this aspect? (Factors, related details, etc)

8. What if the conditions are different, what would this aspect be? (Requires your manipulation)

9. More information (e.g. meaning of some terms, values).

367

F UNCERTAINTY STUDY

MATERIALS

This appendix describes experiment design notes and materials used in the user study described in

Chapter 8.

3
6

8
 A

P
P

E
N

D
IX

 F
 | U

N
C

E
R

T
A

IN
T

Y
 S

T
U

D
Y

 M
A

T
E

R
IA

L
S

F.1 SCENARIOS

F.1.1 SCENARIO DISTRIBUTION BY THEME

Distribution of scenarios for learning phase (10 scenarios), and testing phase (3 scenarios).

F.1.1.1 LEARNING PHASE

S# Theme / Topic LocateMe (location-aware) HearMe (sound-aware)

1 1a Social Awareness Morning, want to check if friend is home, to drop by
(he isn’t home): may not infer as home

Morning, want to call friend: may be inferred as talking when
actually silent

2 2a Awareness /
Interruptibility

In office: coworker wants to check if you are in
office yet, to talk to you

Talking to coworker, may be inferred as ambience: get call, or
get notification msg of suppressed call.

3 3a (Pre-set) Service A In Meeting Room A: but may mis-infer that you're
not at venue -> send reminder

After talking, want to review audio of conversation: may not
have recorded since inferred as Music.

4 4a Recommender
Service B

In corridor, want to print document from phone to
nearest printer: may print elsewhere

Detected silence for a long time; recommends music

5 5a Self check Visit coffee shop: make sure location noted Visit coffee shop: make sure sound noted as ambient, not talking

6 2b Awareness /
Interruptibility

In washroom: coworker may wonder why you
appear to be in his office

Talking to coworker at coffee shop, may be inferred as music:
get call, or get notification msg of suppressed call.

7 4b Recommender
Service B

In another corridor, want to print document from
phone to nearest printer: may print elsewhere

Detected silence for a long time; recommends music

8 5b Self check Walking outside to lunch, self-check: location may
be still in office

Testing/checking app, listening to (vocal) music: may be
wrongly inferred as talking

9 3b (Pre-set) Service A In Meeting Room B: but may mis-infer that you're
not at venue -> send reminder

After talking to team of coworkers, want to review audio of
conversation: may not have recorded since inferred as Music.

10 1b Social Awareness Evening, want to check if friend is home, to drop by
(he is home): may not infer as home

Evening, want to call friend: may be inferred as talking when
actually music

F
.1

 S
C

E
N

A
R

IO
S 3

6
9

F.1.1.2 TESTING PHASE

S# Theme / Topic LocateMe (location-aware) HearMe (sound-aware)

11 2c No theme;

Just show ground
truth

Just show Map. Just play Audio clip.

12 5c

13 4c

F.1.2 SCENARIO DISTRIBUTION BY APPLICATION BEHAVIOR

For each Certainty condition, scenarios were randomly selected where the application behaved appropriately () or inappropriately ().

Certainty values also have a “fudge” factor to introduce noise to their values so that they appear random to participants and less

predictable.

S#

Both LocateMe and HearMe (%)

50 60 70 80 90 100

1 1a 48 60 72 79 88 100

2 2a 51 63 72 80 89 98

3 3a 48 59 67 80 90 99

4 4a 51 60 69 79 92 99

5 5a 50 58 69 82 90 100

6 2b 52 62 70 79 89 100

7 4b 51 61 72 81 88 98

8 5b 49 57 73 82 91 99

9 3b 49 60 68 80 91 98

10 1b 51 60 68 78 92 99

370 APPENDIX F | UNCERTAINTY STUDY MATERIALS

F.2 SCENARIO SCRIPTS

We provide scripts and explanation visualizations for both applications LocateMe and HearMe for

all 10 scenarios.These are shown in sections:

1. Scenario introduction

2. Ground truth description

3. Script and diagram for correct behavior (for different Certainty conditions)

4. Script and diagram for wrong behavior (for different Certainty conditions)

F.2.1 LOCATEME SCENARIOS

L1. Morning, want to check if friend is home, to drop by (he isn’t home): may not infer as home
Before you leave for work, you want to check if your friend, John, is still at home so that you can pick up a toolbox you had previously lent him.
You look at LocateMe to see his location:

Correct Application Response

John is at Other Place

50% 60% 70% 80% 90% 100%

It tells you John has already left his home.
You decide to try again later in the day.

Wrong Application Response

John is at Home

50% 60% 70% 80% 90% 100%

N.A.

It tells you John is still at home.
You call him, and discover he has already left home and is driving Natchez St. towards Gaskell St.

Ground Truth
his house is marked with a purple triangle on the following map).

 F.2 SCENARIO SCRIPTS 371

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

7
1

L2. In office: coworker wants to check if you are in office yet, to talk to you
You are in your office getting some work done.
The star denotes where you actually are at for this scenario.
The triangle denotes where your office (RM101) is.

Correct Application Response
Your coworker, Michelle, visits your office and remarks that it is good that you are in early preparing for the important meeting later.
You comment that she could check your location with LocateMe.
You check your status and see:

You are at Your Office (RM101)

50% 60% 70% 80% 90% 100%

Wrong Application Response
You get a call from your coworker, Michelle, who anxiously asked you whether you were in your office yet, preparing for the important meeting in a few minutes.
You check your status and see:

You are in RM103

50% 60% 70% 80% 90% 100%

N.A.

RM103

RM101

L3. In meeting room A: but may misrecognize that you're not at venue -> send reminder
You arrive in Meeting Room A five minutes early.
The star denotes where you actually are at for this scenario.
The triangle denotes where Meeting Room A is.

Correct Application Response
LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

You are in Meeting Room A

50% 60% 70% 80% 90% 100%

Wrong Application Response
LocateMe beeps and sends you a reminder to get to your meeting in Meeting Room A:

You are in RM113
Please go to your meeting in Meeting Room A

50% 60% 70% 80% 90% 100%

N.A.

Meeting Room A

RM113

372 APPENDIX F | UNCERTAINTY STUDY MATERIALS

L4. In corridor, want to print email from phone to nearest printer: may print elsewhere
After the meeting, you are checking your email as you walk along a corridor.
You want to print out an email from your phone to the nearest printer.
The star denotes where you actually are at for this scenario.

LocateMe has the function to do this automatically.
You select "Print to nearest printer."
You check which printer your email was printed to:

Correct Application Response

Nearest Printer is Printer115

50% 60% 70% 80% 90% 100%

Satisfied with the destination, you walk to the nearest printer, and collect your print out.

Wrong Application Response

Nearest Printer is Printer111

50% 60% 70% 80% 90% 100%

N.A.

This is not actually the nearest to you.

Printer115

Printer111

L5. Visit coffee shop: make sure location noted
Feeling sleepy, you visit a coffee shop near your office to get a cup of coffee.
Since LocateMe is a new application to you, you want to check whether it can properly detect you at the
coffee shop.
You look at LocateMe and see:

Correct Application Response

You are at Starbucks Coffee

50% 60% 70% 80% 90% 100%

Wrong Application Response

You are at Some Other Place

50% 60% 70% 80% 90% 100%

N.A.

 F.2 SCENARIO SCRIPTS 373

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

7
3

L6 (L2b). In washroom: coworker may wonder why you appear to be in his office
You are in the washroom taking care of some business, just before your meeting with your neighboring
coworker, Damien.
The star denotes where you actually are at for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

Correct Application Response
You receive a text message from your coworker, Damien, telling you he is waiting at his office, awaiting your arrival.
You check your status and see:

You are at the Washroom

50% 60% 70% 80% 90% 100%

Wrong Application Response
You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’sOffice (RM102)

50% 60% 70% 80% 90% 100%

N.A.

L7 (L4b). In another corridor, want to print document from phone to nearest printer: may print elsewhere
You want to print another email after asking a coworker to send it to you.
You select "Print to nearest printer.“

Note printers (with icons); nearest one is marked with triangle

You check which printer your email was printed to:

Correct Application Response

Nearest Printer is Printer123

50% 60% 70% 80% 90% 100%

Satisfied with the destination, you walk to the nearest printer, and collect your print out.

Wrong Application Response

Nearest Printer is Printer125

50% 60% 70% 80% 90% 100%

N.A.

This is not actually the nearest to you.

Printer123

Printer125

374 APPENDIX F | UNCERTAINTY STUDY MATERIALS

L8 (L5b). Walking outside to lunch, self-check: location may be still in office
It is lunch time and you leave the office to go to a nearby pizza restaurant.
Since LocateMe is a new application to you, you want to check how it checks your location.
While having lunch at the restaurant, you look at LocateMe and see:

You look at LocateMe and see:

Correct Application Response

You are at R & B’s Pizza Place

50% 60% 70% 80% 90% 100%

Wrong Application Response

You are at Jimmy’s Post Tavern

50% 60% 70% 80% 90% 100%

N.A.

L9 (L3b). In Meeting Room B: but may mis-infer that you're not at venue -> send reminder
You arrive in Meeting Room B five minutes early for an afternoon meeting.
The star denotes where you actually are at for this scenario.

Correct Application Response
LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

You are in Meeting Room B

50% 60% 70% 80% 90% 100%

Wrong Application Response
LocateMe beeps and sends you a reminder to get to your meeting in Meeting Room B:

You are in Meeting Room C
Please go to your meeting in Meeting Room B

50% 60% 70% 80% 90% 100%

N.A.

Meeting
Room C

 F.2 SCENARIO SCRIPTS 375

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

7
5

L10 (L1b). Evening, want to check if friend is home, to drop by (he is home): may not infer as home
Before you leave work, you want to check if your friend, John, has returned home so that you can pick up a toolbox you had previously lent him.
You look at LocateMe to see his location:

Correct Application Response

John is at Home

50% 60% 70% 80% 90% 100%

It tells you John is at home.
You call him, and let him know that you would be coming by his place.

Wrong Application Response

John is at Other Place

50% 60% 70% 80% 90% 100%

N.A.

It tells you John is not home.
You call him to ask him what time he would be home, but he tells you he already is.

Ground Truth
John is actually at home
(his house is marked with a purple triangle on the following map).

376 APPENDIX F | UNCERTAINTY STUDY MATERIALS

F.2.2 HEARME SCENARIOS

H1. Morning, want to call friend: may be inferred as talking when actually silent
Once you arrive at work in the morning, you remember you want to contact your friend, John.
You want to call John to ask to pick up, later in the evening, a toolbox you had previously lent him.
Before you do that, you want to check if he is available to be called.
You look at HearMe to see his status:

Correct Application Response

John is Talking

50% 60% 70% 80% 90% 100%

You send him a text message to ask him to call you when he is done talking.

Wrong Application Response

John is Silent

50% 60% 70% 80% 90% 100%

N.A.

You call him, but he tells you he is busy talking to someone now, and asks you to call him back later in the day.

Ground Truth
<NO AUDIO>

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

4

-6

11

-18

9

2

-5

11

-10

12

6

-2

11

-10

15

6

-2

13

-2

15

4

10

12

-2

16

9

10

12

2

17

5

7

-1

17

12

2

7

-6

16

11

-2

5

-7

18

6

-2

5

-7

18

-4

-4

6

-11

18

-9

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.36bits

0.9W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.36bits

0.9W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.36bits

0.9W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.36bits

0.9W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.36bits

0.9W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.36bits

0.9W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1390Hz

.45bits

1.0W/Hz

44%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1390Hz

.45bits

1.0W/Hz

44%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1390Hz

.45bits

1.0W/Hz

44%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1310Hz

.33bits

0.8W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1310Hz

.33bits

0.8W/Hz

5%

 F.2 SCENARIO SCRIPTS 377

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

7
7

H2. Talking to coworker, may be inferred as ambience: get call, or get notification message of suppressed call.
Next, while at your office, your coworker, Michael, comes by to have a conversation with you about a
project.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h2-talking-work.mp3>

Correct Application Response
You are not interrupted for 20 minutes, and when the conversation ends, you receive a notification message from HearMe:

You were In a Conversation
Jenny tried to call you 9 minutes ago

50% 60% 70% 80% 90% 100%

You see that your coworker, Jenny had tried to call you, but HearMe suppressed her call since it interpreted you as uninterruptible.

Wrong Application Response
After 11 minutes, midway through your conversation, you get an interruption from another coworker, Jenny, calling you on your phone.
You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambience Noise
Allowing call from Jenny

50% 60% 70% 80% 90% 100%

N.A.

Evidence for
why Talking

3

7

13

2

25

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

-21

3

11

-15

22

-19

5

11

-10

23

-15

5

11

-5

24

-10

5

12

-2

25

-5

5

13

2

25

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

21

-3

-11

15

-22

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

21

-2

-7

15

-17

25

-2

-7

15

-11

25

2

-3

15

-9

25

2

3

15

-5

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1550Hz

.28bits

1.4W/Hz

9%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1550Hz

.28bits

1.4W/Hz

9%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1550Hz

.28bits

1.4W/Hz

9%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1550Hz

.28bits

1.4W/Hz

9%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1550Hz

.28bits

1.4W/Hz

9%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1550Hz

.28bits

1.4W/Hz

9%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1280Hz

.61bits

1.6W/Hz

22%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1280Hz

.61bits

1.6W/Hz

22%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1280Hz

.61bits

1.6W/Hz

22%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1370Hz

.21bits

1.1W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1370Hz

.21bits

1.1W/Hz

11%

378 APPENDIX F | UNCERTAINTY STUDY MATERIALS

H3. After talking to boss, want to review audio of conversation: may not have recorded since inferred as Music.
Later, you talk to your boss, and he made a comment.
You want to review and save the recorded audio.
HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.
It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h3-talking-work-boss.mp3>

You review HearMe and see:

Correct Application Response

You were In a Conversation
Last recorded speech 1 minute ago

50% 60% 70% 80% 90% 100%

You then play back the rest of the speech, and save it.

Wrong Application Response

You were Listening to Music
Last recorded speech 1 hour ago

50% 60% 70% 80% 90% 100%

N.A.

You realize that the recent conversation was never recorded.

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

-14

4

3

-10

17

5

9

11

1

23

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

-8

7

7

-5

19

-5

7

11

-3

20

2

9

11

-3

21

-7

4

3

-7

17

20

7

4

15

-6

14

-4

-3

10

-17

20

4

3

12

-9

16

1

0

10

-17

16

2

0

12

-10

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1590Hz

.36bits

1.0W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1320Hz

.72bits

1.4W/Hz

20%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1460Hz

.32bits

0.9W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1590Hz

.36bits

1.0W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1320Hz

.72bits

1.4W/Hz

20%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1590Hz

.36bits

1.0W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1590Hz

.36bits

1.0W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1590Hz

.36bits

1.0W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1590Hz

.36bits

1.0W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1320Hz

.72bits

1.4W/Hz

20%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1460Hz

.32bits

0.9W/Hz

2%

 F.2 SCENARIO SCRIPTS 379

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

7
9

H4. Detected silence for a long time; recommends music
You are in your office working alone for some time.
Normally you like to have music on as you work, but you have forgotten to turn it on.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h4-office-ambient.mp3>

Correct Application Response
After a while, HearMe sends you a recommendation notification:

You have been Silent
Would you like to Listen to Music?

50% 60% 70% 80% 90% 100%

Wrong Application Response
After a while, you realize that HearMe should have recommended you to play music, as is part of its functionality.
You examine HearMe:

You are Listening to Music

50% 60% 70% 80% 90% 100%

N.A.

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

10

-9

-4

-5

8

-10

9

4

5

-8

-10

11

5

5

-1

13

-5

0

0

12

-5

11

10

5

-1

13

-2

4

3

12

-5

15

10

14

6

15

-2

5

3

19

15

1

7

8

19

10

-5

-1

-2

8

2

15

13

14

6

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.0W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.0W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.31bits

1.0W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.30bits

1.2W/Hz

5%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1750Hz

.30bits

1.2W/Hz

5%

380 APPENDIX F | UNCERTAINTY STUDY MATERIALS

H5. Visit coffee shop: make sure sound noted as ambient, not talking
Feeling sleepy, you walk to the nearby coffee shop to get some coffee.
Since HearMe is a new application to you, you want to check how it recognizes the noise in the coffee
shop.
You look at HearMe and see:

Here is an audio clip of what was actually heard at that time:
<AUDIO: h5-coffeeshop.mp3>

Correct Application Response

Hearing Ambient Noise

50% 60% 70% 80% 90% 100%

Wrong Application Response

You are In a Conversation

50% 60% 70% 80% 90% 100%

N.A.

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Silence vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

-2

-8

6

-3

7

3

-5

6

2

14

11

-3

6

2

14

11

-3

8

4

20

16

2

8

4

20

3

-5

6

-1

7

2

8

-6

3

-7

2

8

-6

7

-1

2

8

-3

11

12

9

8

-3

11

15

9

16

-3

13

15

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.38bits

1.3W/Hz

33%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.38bits

1.3W/Hz

33%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.38bits

1.3W/Hz

33%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.38bits

1.3W/Hz

33%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.38bits

1.3W/Hz

33%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1330Hz

.38bits

1.3W/Hz

33%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1130Hz

.33bits

1.1W/Hz

23%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1130Hz

.33bits

1.1W/Hz

23%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1130Hz

.33bits

1.1W/Hz

23%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1130Hz

.48bits

1.4W/Hz

40%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1130Hz

.48bits

1.4W/Hz

40%

 F.2 SCENARIO SCRIPTS 381

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

8
1

H6 (H2b). Talking to coworkers at coffee shop, may be inferred as music: get call, or get notification msg of suppressed call.
At the coffee shop, you find Michelle, a coworker, there, and have a chat with her. Here is an audio clip of what was actually heard at that time:

<AUDIO: h6-talking-cafe.mp3>

Correct Application Response
You are not interrupted for 12 minutes, and when the conversation ends, you receive a notification message from HearMe:

You were In a Conversation
Cameron tried to call you 7 minutes ago

50% 60% 70% 80% 90% 100%

You see that your coworker, Cameron had tried to call you, but HearMe suppressed her call since it interpreted you as uninterruptible.

Wrong Application Response
After 5 minutes, midway through your conversation, you get an interruption from another coworker, Cameron, calling you on your phone.
You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambience Noise
Allowing call from Cameron

50% 60% 70% 80% 90% 100%

N.A.

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

3

-5

10

-17

9

-3

5

-10

17

-9

3

-5

10

-10

12

-3

6

-7

17

-3

5

-2

12

-10

15

-3

6

-7

17

7

5

-1

12

-2

16

2

6

-5

17

10

5

9

12

-2

16

6

6

-2

17

13

9

9

12

1

19

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1240Hz

.53bits

1.4W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1240Hz

.53bits

1.4W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1240Hz

.53bits

1.4W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.38bits

1.0W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.38bits

1.0W/Hz

0%

382 APPENDIX F | UNCERTAINTY STUDY MATERIALS

H7 (H4b). Detected silence for a long time; recommends music
Once again, you are in your office working alone for some time,
and you like to have music on as you work, but you have forgotten to turn it on.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h7-office-noise.mp3>

Correct Application Response
After a while, HearMe sends you a recommendation notification:

You have been Silent
Would you like to Listen to Music?

50% 60% 70% 80% 90% 100%

Wrong Application Response
After a while, you realize that HearMe should have recommended you to play music, as is part of its functionality.
You examine HearMe:

You are Listening to Music

50% 60% 70% 80% 90% 100%

N.A.

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

9

-8

-5

-4

8

-9

8

5

4

-8

-9

10

6

6

-3

13

-5

-1

1

12

12

-2

4

4

12

16

-1

6

2

17

16

2

7

7

18

10

-4

-2

-1

8

3

16

12

10

-1

-5

11

10

5

-1

-4

15

11

9

-1

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1150Hz

.27bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1150Hz

.27bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1150Hz

.27bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1150Hz

.27bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1150Hz

.27bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1150Hz

.27bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

990Hz

.27bits

1.0W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

990Hz

.27bits

1.0W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

990Hz

.27bits

1.0W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1270Hz

.29bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1270Hz

.29bits

0.9W/Hz

0%

 F.2 SCENARIO SCRIPTS 383

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

8
3

H8 (H5b). Testing/checking app, listening to (vocal) music: may be wrongly inferred as talking
You are now working and listening to some musicby Josh Woodward.
Since HearMe is a new application to you, you want to check how it recognizes the music you are playing.
You look at HearMe and see:

Here is an audio clip of what was actually heard at that time:
<AUDIO: h8-music-vocal.mp3>

Correct Application Response

You are Listening to Music

50% 60% 70% 80% 90% 100%

Wrong Application Response

You are In a Conversation

50% 60% 70% 80% 90% 100%

N.A.

Evidence for
why Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Music vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Music vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Music vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Music vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Music vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

2

-5

6

5

-8

2

-5

8

5

0

8

-1

8

5

0

8

4

8

5

5

8

5

10

9

8

8

8

10

11

13

11

8

12

-2

11

8

6

10

-3

9

-2

6

10

-3

9

-2

6

0

-3

9

-2

5

-6

-5

8

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.48bits

1.2W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.48bits

1.2W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.48bits

1.2W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.48bits

1.2W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.48bits

1.2W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.48bits

1.2W/Hz

12%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.43bits

0.9W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.43bits

0.9W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.43bits

0.9W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.51bits

1.4W/Hz

22%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.51bits

1.4W/Hz

22%

384 APPENDIX F | UNCERTAINTY STUDY MATERIALS

H9 (H3b). After talking to team of coworkers, want to review audio : may not have recorded since inferred as Music.
After a group meeting with some coworkers, you want to review and save the recorded audio.
HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.
It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h9-talking-work.mp3>

You review HearMe and see:

Correct Application Response

You were In a Conversation
Last recorded speech 1 minute ago

50% 60% 70% 80% 90% 100%

You then play back the rest of the speech, and save it.

Wrong Application Response

You were Listening to Music
Last recorded speech 2 hours ago

50% 60% 70% 80% 90% 100%

N.A.

You realize that the recent conversation was never recorded.

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

-13

5

4

-13

17

13

-5

-4

13

-17

16

2

-1

10

-17

-9

8

7

-6

20

16

3

1

11

-11

-6

8

10

-3

21

20

3

4

13

-10

1

9

12

-3

21

4

9

12

2

23

-7

4

2

-6

17

20

6

4

15

-5

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1410Hz

.35bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1410Hz

.35bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1410Hz

.35bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1410Hz

.35bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1410Hz

.35bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1410Hz

.35bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.40bits

1.2W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1340Hz

.40bits

1.2W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1480Hz

.31bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1480Hz

.31bits

1.1W/Hz

8%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1480Hz

.31bits

1.1W/Hz

8%

 F.2 SCENARIO SCRIPTS 385

F
.2

 S
C

E
N

A
R

IO
 Scrip

ts
 3

8
5

H10 (H1b). Evening, want to call friend: may be inferred as talking when actually music
Before you leave work, you want to call your friend, John, to ask to pick up a toolbox you had previously lent him.
You look at HearMe to see his status:

Correct Application Response

John is Silent

50% 60% 70% 80% 90% 100%

You go ahead to call him, and discuss when you can go over to his place.

Wrong Application Response

John is Talking

50% 60% 70% 80% 90% 100%

N.A.

You send him a text message to ask him to call you when he is done talking.
But he immediately calls back and tells him he was not talking, and can discuss with you now.

Ground Truth
<NO AUDIO>

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
why Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

Evidence for
Ambience vs. Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

21

-3

-11

15

-22

20

-1

-8

15

-16

25

-2

-8

16

-11

24

2

-4

14

-6

24

2

3

14

-3

24

6

4

14

2

-5

5

13

2

25

-10

5

13

-3

25

-14

4

12

-5

23

-18

4

12

-11

23

-21

3

11

-15

22

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1200Hz

.35bits

1.3W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1200Hz

.35bits

1.3W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1200Hz

.35bits

1.3W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1200Hz

.35bits

1.3W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1200Hz

.35bits

1.3W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1200Hz

.35bits

1.3W/Hz

11%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1250Hz

.24bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1250Hz

.24bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1250Hz

.24bits

0.9W/Hz

0%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1180Hz

.66bits

1.8W/Hz

28%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1180Hz

.66bits

1.8W/Hz

28%

386 APPENDIX F | UNCERTAINTY STUDY MATERIALS

F.3 SURVEY INSTRUMENT

We implemented the online survey using LimeSurvey11. Participants accessed the survey from

Amazon Mechanical Turk through an External Question. LocateMe and HearMe were tested in two

separate surveys in two independent tasks.

F.3.1 THINK ALOUD STUDY INSTRUCTIONS

Participants during the think aloud experiment were presented instructions at the beginning of

each phase: first version for the non-intelligible condition, second version for the Certainty-only

condition, and third version for the Full Intelligibility condition.

11

 LimeSurvey. http://www.limesurvey.org. Retrieved 13 March 2012.

http://www.limesurvey.org/

F.3 SURVEY INSTRUMENT 387

LocateMe - Instructions

First Version

LocateMe detects where you are (e.g., whether at home, in some room in your office, or at some

other place), and performs several desirable actions, such as:

 Indicate your availability (e.g., whether you are at the office yet)

 Remind you to get to certain destinations if you are not already there

 Send you notifications or reminders when you are at certain places (e.g., loading the

grocery list when it detects you at the supermarket)

 Help you print on the printer nearest to you

 Inform you where your buddies are (e.g., whether at home)

LocateMe uses several sensed factors to estimate where you are. It then infers which place you

are (e.g. which office room you are in, whether you are at home).

For each scenario, you would be told what is happening in those situations. You may see a map

indicating truly where you are (indicated by a star), and indicating where certain named places

are. These are provided to help you understand what is happening. Note that this is not

necessarily how LocateMe perceives about the places and where you are. LocateMe may or

may not infer your location correctly.

Second Version
LocateMe detects where you are (e.g., whether at home, in some room in your office, or at some

other place), and performs several desirable actions, such as:

 Indicate your availability (e.g., whether you are at the office yet)

 Remind you to get to certain destinations if you are not already there

 Send you notifications or reminders when you are at certain places (e.g., loading the

grocery list when it detects you at the supermarket)

 Help you print on the printer nearest to you

 Inform you where your buddies are (e.g., whether at home)

LocateMe uses several sensed factors to estimate where you are. It then infers which place you

are (e.g. which office room you are in, whether you are at home).

The version of LocateMe you are using can also indicate how confident it is about its inference

(e.g., 62%, 93%).

388 APPENDIX F | UNCERTAINTY STUDY MATERIALS

Third Version
Furthermore, it can show you a map with visualizations to show you where it thinks you are and

explain to you how it made its inference. It uses several "bubbles" to

1. Indicate an area where it thinks you could be

2. Indicate the size and location of a named place (e.g., circle representing Home)

Bubble Description / Meaning

Indicates the area where LocateMe thinks you could be. You are more

likely to be in the center of the circle, but your exact location can be

anywhere within the outer circle, and even possibly (though very

unlikely) outside it. I.e. the further away from the center of the circle,

the less it would think you would be there.

The larger the circle, the larger the area that you could be in.

Represents the area for a named place (e.g., Home, Restaurant, Bar).

The size of the circle indicates the threshold of area that would be

considered to be. Some places are defined to be larger than others, and

some places may be defined to be large to have a lenient threshold.

The green color indicates that you inferred to be at this place.

Also represents an area defined for a named place.

However, the red color indicates that you are inferred not to be at this

place.

Some examples and their interpretations:

.

This shows that LocateMe infers you to be at R & B's

Pizza Place, and actually your location is inferred to

be most likely just outside (center of circle).

 This shows that LocateMe infers you to be at

more likely at Jimmy's Port Tavern, and not R

& B's Pizza Place.

F.3 SURVEY INSTRUMENT 389

HearMe - Instructions

First Version
HearMe detects sounds around you (whether you are in a conversation, listening to music, or just

ambient noise), and performs several desirable actions, such as:

 Indicate your availability (e.g., whether you are busy talking to someone)

 Record the detected audio only when it thinks there is talking

 Recommend that you play some music if it detects silence for a long time as you work

 Inform you whether your buddy is busy talking to someone

HearMe uses several sensed factors to evaluate what it hears. It then infers what you could be

doing either as talking (being in a conversation), listening to music, or silent (it just hears

ambient noise).

Second Version
HearMe detects sounds around you (whether you are in a conversation, listening to music, or just

ambient noise), and performs several desirable actions, such as:

 Indicate your availability (e.g., whether you are busy talking to someone)

 Record the detected audio only when it thinks there is talking

 Recommend that you play some music if it detects silence for a long time as you work

 Inform you whether your buddy is busy talking to someone

HearMe uses several sensed factors to evaluate what it hears. It then infers what you could be

doing either as talking (being in a conversation), listening to music, or silent (it just hears

ambient noise).

The version of HearMe you are using is also able to indicate how confident it is about its

inference (e.g., 62%, 93%).

390 APPENDIX F | UNCERTAINTY STUDY MATERIALS

Third Version
Furthermore, it can show you two types of visualizations to explain to you how it made its

inference:

1. The values of input factors, and for each factor, whether it is below, at, or above the

average value for that factor

2. The evidence of input factors, whether each factor votes for or against the current

inference

The following table describes each factor, and what it means:

Factor Description / Meaning

Indicates the percentage of the sound sampled was

relatively silent/quiet than the rest of the sample.

[Units: percentage (%)]

The sound of talking would typically have a high

percentage of silence.

Indicates the range of pitches (frequencies) that was heard

in the sound sample, from a low pitch to a high pitch.

[Units: Hertz (Hz)]

The sound of Music would typically have a high pitch

range.

Indicates, on average, how fast the pitch was fluctuating

(changing from high to low, vice-versa).

[Units: Watts per Hertz (W/Hz)]

The sound of talking would typically have a high rate of

pitch fluctuation, while the sound of Music would

typically have a low rate.

Indicates how "pure" or "noisy"/"impure" the sound heard

was.

[Units: bits]

The sound of talking would typically have high pitch

purity.

There are many other more technical factors that are used

for sound inference, and they are summarized as "Other

Factors." Their exact values are not shown, but they

contribute evidence to the inference.

HearMe can tell you whether the sensed values of these factors are below, at, or above the

average value for that factor, across all sound samples it has heard. This is indicated with gauge

icons:

Much

Below Average Below Average Average Above Average

Much

Above Average

F.3 SURVEY INSTRUMENT 391

Other than telling you the values of the factors, HearMe can also tell you how much evidence

each factor votes for or against an inference. This is a numerical point, either positive, negative,

or zero. The average of all these weights of evidence leads to the ultimate inference. These

weights are shown in a bar chart with numbers at the ends of the bars.

Some examples and their interpretations:

Evidence Visualization Sensed Factors Visualization

On average, the weights of factors vote more for

inferring Talking, instead of Ambience. The

strongest factor voting this direction is Other

Factors with 19 points. However, Periods of

Silence and Pitch Purity vote for Ambience

with -8 and -5 points, respectively.

 Periods of Silence: 16% of the sound sampled

was relatively silent compared to the rest of the

sample. This is above average for that factor.

Pitch Purity: the sound sampled has a purity of

.61bits, which is about the average for samples

heard.

392 APPENDIX F | UNCERTAINTY STUDY MATERIALS

F.3.2 LOCATEME SCENARIOS ACROSS INTELLIGIBILITY CONDITIONS

LocateMe (1st)
Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)

F.3 SURVEY INSTRUMENT 393

LocateMe (2nd)
Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

Confidence

You are at Damien’s

Office (RM102)

52%

394 APPENDIX F | UNCERTAINTY STUDY MATERIALS

LocateMe (3rd)
Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

F.3 SURVEY INSTRUMENT 395

LocateMe (1st) ^
Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)

396 APPENDIX F | UNCERTAINTY STUDY MATERIALS

LocateMe (2nd) ^
Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

Confidence

You are at Damien’s

Office (RM102)

89%

F.3 SURVEY INSTRUMENT 397

LocateMe (3rd) ^
Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

398 APPENDIX F | UNCERTAINTY STUDY MATERIALS

LocateMe (1st)
Scenario B

You arrive in Meeting Room B five minutes early.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Meeting
Room C

You are in
Meeting Room B

F.3 SURVEY INSTRUMENT 399

LocateMe (2nd)
Scenario B

You arrive in Meeting Room B five minutes early.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Meeting
Room C

Confidence

You are in
Meeting Room B

49%

400 APPENDIX F | UNCERTAINTY STUDY MATERIALS

LocateMe (3rd)
Scenario B

You arrive in Meeting Room B five minutes early.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Meeting
Room C

F.3 SURVEY INSTRUMENT 401

LocateMe (1st) ^
Scenario B

You arrive in Meeting Room B five minutes early.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Meeting
Room C

You are in
Meeting Room B

402 APPENDIX F | UNCERTAINTY STUDY MATERIALS

LocateMe (2nd) ^
Scenario B

You arrive in Meeting Room B five minutes early.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Meeting
Room C

Confidence

You are in
Meeting Room B

92%

F.3 SURVEY INSTRUMENT 403

LocateMe (3rd) ^
Scenario B

You arrive in Meeting Room B five minutes early.

The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Meeting
Room C

404 APPENDIX F | UNCERTAINTY STUDY MATERIALS

F.3.3 HEARME SCENARIOS ACROSS INTELLIGIBILITY CONDITIONS

HearMe (1st)

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambient Noise
Allowing call from Cameron

F.3 SURVEY INSTRUMENT 405

HearMe (2nd)

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Confidence

Hearing Ambient Noise
Allowing call from Cameron

52%

406 APPENDIX F | UNCERTAINTY STUDY MATERIALS

HearMe (3rd)

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Confidence

Hearing Ambient Noise
Allowing call from Cameron

52%

Confidence

Hearing Ambient Noise
Allowing call from Cameron

52%
Evidence for

Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

-3

5

-10

17

-9

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.42bits

1.1W/Hz

2%

F.3 SURVEY INSTRUMENT 407

HearMe (1st) ^

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambient Noise
Allowing call from Cameron

408 APPENDIX F | UNCERTAINTY STUDY MATERIALS

HearMe (2nd) ^

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Confidence

Hearing Ambient Noise
Allowing call from Cameron

89%

F.3 SURVEY INSTRUMENT 409

HearMe (3rd) ^

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Confidence

Hearing Ambient Noise
Allowing call from Cameron

89%
Confidence

Hearing Ambient Noise
Allowing call from Cameron

89%
Evidence for

Talking vs. Ambience

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

6

6

-2

17

13

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1230Hz

.38bits

1.0W/Hz

0%

410 APPENDIX F | UNCERTAINTY STUDY MATERIALS

HearMe (1st)

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You then play back the rest of the speech, and save it.

You were In a Conversation
Last recorded speech 1 minute

ago

F.3 SURVEY INSTRUMENT 411

HearMe (2nd)

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You then play back the rest of the speech, and save it.

Confidence

You were In a Conversation
Last recorded speech 1 minute

ago

49%

412 APPENDIX F | UNCERTAINTY STUDY MATERIALS

HearMe (3rd)

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You then play back the rest of the speech, and save it.

Confidence

You were In a Conversation
Last recorded speech 1 minute

ago

49%
Evidence for

Talking vs. Music

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

13

-5

-4

13

-17

Confidence

You were In a Conversation
Last recorded speech 1 minute

ago

49%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1410Hz

.35bits

1.1W/Hz

8%

F.3 SURVEY INSTRUMENT 413

HearMe (1st) ^

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You then play back the rest of the speech, and save it.

You were In a Conversation
Last recorded speech 1 minute

ago

414 APPENDIX F | UNCERTAINTY STUDY MATERIALS

HearMe (2nd) ^

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You then play back the rest of the speech, and save it.

Confidence

You were In a Conversation
Last recorded speech 1 minute

ago

92%

F.3 SURVEY INSTRUMENT 415

HearMe (3rd) ^

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You then play back the rest of the speech, and save it.

Confidence

You were In a Conversation
Cam Last recorded speech 1

minute ago

92%
Evidence for
why Talking

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

Other Factors

1

9

12

-3

21

Confidence

You were In a Conversation
Last recorded speech 1 minute

ago

92%

Sensed Factors

Pitch Range

Pitch Purity

Pitch Fluctuation

Periods of Silence

1480Hz

.31bits

1.1W/Hz

8%

416 APPENDIX F | UNCERTAINTY STUDY MATERIALS

F.3.3.1 SURVEY QUESTIONS FOR EACH SCENARIO

Participant #: _________ Time and Date: _________________________

Gender: ________, Age: _________, Education: _________________, Occupation: _________________

Application: __________________, Scenario: ______

1. What is happening in this situation?

2. How important or unimportant do you feel that the application should behave appropriately in

this situation?

 1st 2nd 3rd

Very Unimportant

Unimportant

Somewhat Unimportant

Neither Unimportant nor Important

Somewhat Important

Important

Very Important

3. What did the application do in this situation?

4. How confident do you think the application is of its inference?

 1st 2nd 3rd

Give a percentage between 0 and 100%

5. What did the application do in this situation?

6. How appropriately or inappropriately did the application behave in this situation?

 1st 2nd 3rd

Very Inappropriately

Inappropriately

Somewhat Inappropriately

Neither Inappropriately nor Appropriately

Somewhat Appropriately

Appropriately

Very Appropriately

F.3 SURVEY INSTRUMENT 417

7. How much do you agree or disagree with the application's inference, given how easy or difficult

it is to infer this?

 1st 2nd 3rd

Strongly Disagree

Disagree

Somewhat Disagree

Neither Disagree nor Agree

Somewhat Agree

Agree

Strongly Agree

8. Why did the application infer what it did? (Experimenter elaborates)

 419

G LAΚSA USER INTERFACE

This appendix describes the user interface of various aspects of the Laκsa prototype used in the

design and usability study in Chapter 7.

4
2

0
 A

P
P

E
N

D
IX

 G
 | L

A
Κ

S
A

 U
SE

R
 IN

T
E

R
F

A
C

E

G.1 INTELLIGIBILITY USER INTERFACE

Example screenshots of intelligibility explanation types provided by Laκsa. The GUI was implemented for the desktop in Java Swing.

G.1.1 AVAILABILITY

What When Why Why Not How Can Outputs Inputs What If

G.1.2 LOCATION

What When Why Why Not How Can Outputs Inputs

G
.1

 IN
T

E
L

L
IG

IB
IL

IT
Y

 U
SE

R
 IN

T
E

R
F

A
C

E
 4

2
1

G.1.3 SOUND

What When Why Why Not How Can Outputs Inputs Definition

G.1.4 MOTION

What When Why Why Not How Can Outputs Inputs

Periods of Silence

 423

H LAΚSA2 USER INTERFACE

This appendix describes the user interface of various aspects of the Laκsa2 prototype used in the

user study in Chapter 9. Only the Intelligibility User Interface was seen by participants, while the

other interfaces were for administrative and configuration purposes. Participants also did not use

the Motion inference and explanation features.

Furthermore, while Laκsa2 supports three services — Availability, Reminders, and Suggestions,

participants were only exposed to the Availability service in the user study.

4
2

4
 A

P
P

E
N

D
IX

 H
 | L

A
Κ

S
A

2
 U

SE
R

 IN
T

E
R

F
A

C
E

H.1 INTELLIGIBILITY USER INTERFACE

 What + Certainty Outputs + Certainties Inputs + Certainties + When Why Why Not

H
o

m
e

Action states and

sensed state

Showing sensed Inputs with
Certainties and When.

A
v

a
il

a
b

il
it

y

Lists Output values. Requires
explicit user interaction to see

Uninferred values.

Similar to Inputs of home, but
contextualizes for action (in this

case, Availability)

Filtered explanation only showing
relevant factors.

Textual natural language explanation
for improved readability.

Flingable to other reasons to support
quick comparisons.

H
.1

 IN
T

E
L

L
IG

IB
IL

IT
Y

 U
SE

R
 IN

T
E

R
F

A
C

E
 4

2
5

 What + Certainty Outputs + Certainties Inputs + Certainties + When Why Why Not

S
ch

e
d

u
le

Show native Android calendar
app as explanation of schedule

P
la

ce

Certainty also
described with
location radius
accuracy, and

source
(network/GPS)

Input coordinates represented by
center dot.

Concentric circles indicating
accuracy bounds for: 15%, 50%,
95%, 99.9% CEP (circular error

probable)

Area overlap with selected Place to
ask Why.

Higher bandwidth: can also show
overlaps with multiple places

(including nearby uninferred Places).

Also draws line
from uninferred

Place to user
Location.

4
2

6
 A

P
P

E
N

D
IX

 H
 | L

A
Κ

S
A

2
 U

SE
R

 IN
T

E
R

F
A

C
E

 What + Certainty Outputs + Certainties Inputs + Certainties + When Why Why Not
S

o
u

n
d

Numeric values indicating sensed
value of features. Gauges

indicating whether value is
relatively high/low/average.

Flingable to support quick
comparisons.

Bar chart visualizations indicating
weights of evidences.

M
o

ti
o

n

Similar to Sound, but also
includes physical diagram to

show Orientation.

Multiple reasons
via radio choice.

H
.1

 IN
T

E
L

L
IG

IB
IL

IT
Y

 U
SE

R
 IN

T
E

R
F

A
C

E
 4

2
7

 History What If Description / Terminological

A
v

a
il

a
b

il
it

y

User can access
historical instances

by selecting from list,
to go to What

explanation of time.

Accessed via the context menu's About
menu item.

S
ch

e
d

u
le

Show native Android
calendar app as
explanation of

schedule

4
2

8
 A

P
P

E
N

D
IX

 H
 | L

A
Κ

S
A

2
 U

SE
R

 IN
T

E
R

F
A

C
E

 History What If Description / Terminological

P
la

ce

S
o

u
n

d

Terminological explanations when
clicking on labels.

Descriptive explanations via Options
menu.

M
o

ti
o

n

Similar to Sound

H
.2

 C
O

N
T

R
O

L
 U

SE
R

 IN
T

E
R

F
A

C
E

S 4
2

9

H.2 CONTROL USER INTERFACES

This UI supports setting up rules and to train machine learning models for the experiment. It was only used by the experimenter.

Rules Place Schedule Sound Motion

Edit accessed via long-press of
rules anywhere they are seen.

Can add new rule via Options
Menu.

Accessed by long-tapping Place
bubble (green or red). Can move

or resize.

Add and edit via
native Android
calendar app.

Training for Sound instances.

Can train classifier from saved
instances.

Training for Motion
instances. Can train

classifier from
saved instances.

4
3

0
 A

P
P

E
N

D
IX

 H
 | L

A
Κ

S
A

2
 U

SE
R

 IN
T

E
R

F
A

C
E

H.3 ACTIONS USER INTERFACE

As part of the original range of features, Laκsa2 supported three Actions: setting Availability, triggering Reminders, and triggering third-

party-set Suggestions.

Availability Reminders Suggestions

Ringer mode changes

Available: Normal

Semi-Available: Vibrate

Unavailable: Silent

Laκsa wakes the screen, unlocks
key-guard, brings up Reminder

page, and pop-ups Alert Dialog with
reminder message when contextual

situation is met.

Similar to Reminders, but rules will
have been set by others

(commercial advertisers, social
network, etc.), and not by user.

H
.4

 L
A

Κ
SA

 IN
T

E
L

L
IG

IB
IL

IT
Y

 G
R

A
P

H
 4

3
1

H.4 LAΚSA INTELLIGIBILITY GRAPH

What

Place
What

Place
Why
Not

Place
Inputs

Place
Outputs

(w/ Un-
inferreds)

Place
Outputs

Place
Why

Place
History

Sound
What

Sound
Why
Not

Sound
Inputs

Sound
Outputs

(w/ Un-
inferreds)

Sound
Outputs

Sound
Why

Sound
History

Sound
Inputs
(Audio
Play)

Motion
What

Motion
Why
Not

Motion
Inputs

Motion
Outputs

(w/ Un-
inferreds)

Motion
Outputs

Motion
Why

Motion
History

Motion
Why
Not

(other
reasons)

Schedule
What

Schedule
Why
Not

Schedule
Inputs

Schedule
Outputs

(w/ Un-
inferreds)

Schedule
Outputs

Schedule
Why

Schedule
History

Inputs
Place

Schedule
Sound
Motion

Avail.
What

Avail.
Why
Not

Avail.
Outputs

(w/ Un-
inferreds)

Avail.
Outputs

Avail.
Why

Avail.
History

Avail.
Inputs

Place
Schedule

Sound
Motion

Place

Availability

Schedule Sound Motion

Home

Laκsa’s Intelligibility Graph
Paths to access various explanation types

• Definition / terminological explanations not shown
• E.g. longest path (9 steps)

1. Home
2. Avail. What, Outputs, Outputs-uninferreds, Why Not
3. Sound What, Inputs, Why, Why Not

• Same e.g. optimal path (4 steps)
1. Home
2. Sound What, Sound Outputs, Why Not

Place
Sound

Avail.
What If

Avail.
What If

(queried)

 433

I LAΚSA2 STUDY MATERIALS

This appendix details several instruction and scenario materials presented to participants in the

study presented in Chapter 9.

I.1 INSTRUCTIONS

Instructions that participants read before interacting with the Laκsa prototype. Participants may

ask the experimenter for clarifications.

 434 APPENDIX I | LAΚSA2 STUDY MATERIALS

4
3

4
 A

P
P

E
N

D
IX

 I | L
A

Κ
SA

2
 S

T
U

D
Y

 M
A

T
E

R
IA

L
S

User Study Instructions

Your Objective
Imagine you work in an office with a team of coworkers. The scenarios we will cover pertain to this
job and a particular project you are currently working on.

You also recently installed a new smart phone application, called Laκsa, to help automatically set
your availability based on what it can sense about you. This can help improve the productivity of
your team by indicating when to contact one another, and reducing unnecessary interruptions.
While it is often correct, it sometimes makes mistakes (as does everyone). However, it can explain
to you what it knows and what it is thinking.

You will evaluate the performance of Laκsa to determine when and how best to use it, i.e., when it
works well, and when it makes mistakes. Try to learn enough about Laκsa to be able to teach them
how to use it, and configure it so that it best performs for them and yourself.

Find out whether the application performs appropriately, and if not, how to improve its
performance, so that it does not make the mistakes again. You may make changes by:

1. Proposing to adjust some settings of the application
a. Positions and sizes of places
b. Calendar schedule
c. Sound sensitivities

2. Proposing new rules to add to the application
3. Suggesting ways to change your behavior or environment

You may look at the application anytime you wish, even when nothing in particular is happening. As
you use the application, feel free to tap on anything.

Scenarios
In this study, you will be going through several scenarios where you will be engaged in several
activities. Laκsa will change your Availability status at various times. Even though the
experimenter is nearby, as long as the experimenter does not talk to you, imagine he is not around.

I.1 INSTRUCTIONS 435

1
0

.3
 A

D
D

IT
IO

N
A
L
 R

E
S
E
A
R

C
H

 O
P
P
O

R
T
U

N
IT

IE
S 4

3
5

 Android Phone Instructions
The following diagram shows you buttons on the phone that you will need to use during the study.

Skype Instructions
All calls in this study will be done through Skype. You may receive calls, or miss them. If you miss a
call, you will see the

icon on the top notification bar as such:

You can drag the top bard down to see this:

Clicking on the Skype section, will bring you to the Skype application, where you can see any recent
events, and at what times they happened.

 436 APPENDIX I | LAΚSA2 STUDY MATERIALS

4
3

6
 A

P
P

E
N

D
IX

 I | L
A

Κ
SA

2
 S

T
U

D
Y

 M
A

T
E

R
IA

L
S

Laκsa Application Instructions
Laκsa is a smart phone application that senses what is happening to proactively change your
availability and send you appropriate reminders. For example, it can set your status to Unavailable
if it detects that you are in the Office, and are involved in a Conversation.

It uses sophisticated sensing and inference to figure out what you are doing. While it is often
correct, it sometimes makes mistakes (as does everyone). However, it can explain to you
what it knows and what it is thinking.

Availability
There are times when you would rather not be interrupted when you are busy, such as when in a
meeting, or working frantically in the office. Using rules that have been written, Laκsa can
automatically set your availability, and the phone’s ringer mode. Hence, you will not be disturbed
when you should not be, and you will not forget to set your ringer to normal when you become
available again.

Your availability may be automatically set to: Available, Semi-Available, or Unavailable.

These correspond to ringer modes: Normal, Vibrate, Silent, respectively.

I.1 INSTRUCTIONS 437

1
0

.3
 A

D
D

IT
IO

N
A
L
 R

E
S
E
A
R

C
H

 O
P
P
O

R
T
U

N
IT

IE
S 4

3
7

Sensed Factors
Laκsa figures out what is happening by sensing several factors: Place, Schedule, and Sound.

 Place
Laκsa can detect your location and
determine if you are near any places you
have previously saved. For example, it can
tell whether you are at Home, in the Office,
or near the Grocery Store.

 Schedule
Laκsa can determine if you have any events
scheduled on your Google calendar.

 Sound
Laκsa can hear the sounds near you and
recognize what you may be doing or
listening to. It can distinguish between the
following three sound activities:

1. Talking / Conversation,

2. Listening to Music,

3. Silence / Ambient Noise.

 438 APPENDIX I | LAΚSA2 STUDY MATERIALS

4
3

8
 A

P
P

E
N

D
IX

 I | L
A

Κ
SA

2
 S

T
U

D
Y

 M
A

T
E

R
IA

L
S

Rules
The following rules and saved places have been set up for you for the scenarios. Please study them.

Rule Availability Ringer

Sensed Factors

Place Schedule Sound

1 Having an office meeting

Unavailable

Silent

Office

Meeting

2 Work chatter

Unavailable

Silent

Office

Talking

3 Someone's talking

Semi-Available

Vibrate

Talking

4 Be quiet in the library

Semi-Available

Vibrate

Hunt Library

Default

 Available

Ring
All other cases

Saved Places

Library Book

Wean
Library

Tazza D’Oro
(Café)

Office

TJ211 .A54 2006

I.2 SCENARIOS 439

1
.1

 4
3

9

I.2 SCENARIOS

Checklist for experimenter to cover scenarios with participant with estimated times for each

scenario.

Scenario / Critical Incident
Time

Plan Actual

- Briefing / intro 0:00
1. Sign IRB consent form

2. Read instructions; can keep for reference throughout study

3. Verify participant understands app functionality

1 Conversation in office 0:10

 1. Experimenter walks through interface (Scenario 0)

2. Verify participant understands app UI, by asking her to derive an

explanation (e.g. why detected talking, why Unavailable)

- Read news and play music (heavy vocals: Sound of

Silence, 3 min)

0:20

1. Experimenter tells participant it is OK to listen to music at the office, and

asks her to play the song Sound of Silence by Simon and Garfunkel

(http://www.youtube.com/watch?v=eZGWQauQOAQ).

2. Participant goes to http://www.cnn.com to read their favorite news.

2 Miss call from coworker because of Music 0:30
1. Experimenter makes a call to phone; participant expected to miss call, since

phone silent.

2. Call again after the music is over, and there is silence

3. "Your coworker has been trying to call you for the past 3 minutes. He asks

why you didn’t pick up sooner."

- Walk to library to borrow books 0:40
1. "You need to borrow a book from a nearby library."

2. Give participants call numbers and book titles.

3. Enter Wean library until sufficiently deep (to not disturb other patrons);

have participant look for 1
st
 book

3 Phone rings in Wean library 0:45
1. Do not talk to get sound recognition as Silence.

2. Experimenter makes a call to phone; participant's phone will ring loudly.

3. Try not to prompt: "Your friend is calling you. Remember we're in the

library. How do you feel?"

4 Investigate availability in Café 0:55
1. Prompt: "You want to ensure that you will be available to calls whenever

you go for coffee breaks."

2. Participant may or may not want / need to go to the actual café.

http://www.youtube.com/watch?v=eZGWQauQOAQ
http://www.cnn.com/

 440 APPENDIX I | LAΚSA2 STUDY MATERIALS

4
4

0
 A

P
P

E
N

D
IX

 I | L
A

Κ
SA

2
 S

T
U

D
Y

 M
A

T
E

R
IA

L
S

Scenario 1

[You are talking to me now.]

Check if you will be interrupted with a phone call,

i.e., that your phone will not ring if someone calls you.

Also, explore the application as much as possible

to become familiar with it.

Scenario 2

Your coworker, Damien, is calling you, and says:

“Hello! I’ve been trying to call you for the past 3

minutes. Could you hear your phone ring? Why didn’t

you pick up sooner?

“Anyways, I wanted to check whether you’ve read

my email yet. … Please take a look at it as soon as

possible and let me know what you think.

“Also, please get your phone fixed, so you’ll get

my call next time.”

I.2 SCENARIOS 441

1
.1

 4
4

1

Scenario 3

Another coworker, Evelyn, is calling you, and says

“Hi! Is now a good time to call you?

“I wanted to know if you have some time to spare?

Can you help me with some figures for a document that

I’m working on?”

Scenario 4

You normally go to the nearby Tazza D’Oro café to get coffee or

snacks during the day.

You want to check whether you will be able to receive calls if you are

there.

[What will you do? Actually, do the actions, don’t just tell me.]

 442 APPENDIX I | LAΚSA2 STUDY MATERIALS

4
4

2
 A

P
P

E
N

D
IX

 I | L
A

Κ
SA

2
 S

T
U

D
Y

 M
A

T
E

R
IA

L
S

Scenario 2 Email

I.3 SURVEY INSTRUMENT 443

1
.1

 4
4

3

I.3 SURVEY INSTRUMENT

Participant #: ___________
Date: ________________________

Start Time: ______________________ End Time: ______________________

DATABASE
Backed up? Uploaded?

AUDIO RECORDINGS
Uploaded?

Demographics

Gender: Male | Female Age: _____________ Ethnicity: ___________________

Education: ____________________ Occupation: ____________________________

Own a Smart Phone?

For how long? ____________________

Which brand & model?

 iPhone

 Android

 Windows 7 Mobile

 Blackberry

 Other: ___________________________

Usage?

 Web surfing

 Email, Calendar

 Play music

 Camera

 Social (Facebook, Twitter, etc)

 Maps

 Games

 Other: ___________________________

PLEASE DON’T TURN OVER

 444 APPENDIX I | LAΚSA2 STUDY MATERIALS

4
4

4
 A

P
P

E
N

D
IX

 I | L
A

Κ
SA

2
 S

T
U

D
Y

 M
A

T
E

R
IA

L
S

Questionnaire (Scenario 1) Trigger Time: _________________

Notes:

START RECORDING AUDIO

Interview Time: _______________
1. Please rate whether you agree with the following statements

S
tr

o
n
g
ly

D
is

ag
re

e

D
is

ag
re

e

S
o
m

ew
h
at

D
is

ag
re

e

N
ei

th
er

S
o
m

ew
h
at

A
g
re

e

A
g
re

e

S
tr

o
n
g
ly

A
g
re

e

Laκsa behaved appropriately in this

situation.

It was important that Laκsa

behaved appropriately in this situation.

Laκsa's behavior was useful in this

situation (correct/wrong)

Laκsa's explanations were helpful for

me to understand this situation

2. How do you feel about what just happened?

3. What did you want to know in this situation?

4. What do you understand about what the application did and thought? Why?

To improve Laκsa's behavior, how will you change:
5. The application settings? Rules?

6. Your behavior?

 445

J LAΚSA2 USAGE DETAILS

We present some data of participant usage of Intelligibility features for the study in Chapter 9.

J.1 PARTICIPANT SEQUENCE MODELS

We extracted data logs from the Sqlite3 database of the Android smart phone (Motorola Droid)

which participants used during the study. This was cleansed for occasional errors such as

 User unintentional taps (identified by quickly tapping back within 0.5 sec)

 Repeated log entries due to lag

We parsed the logs into separate users and generated network graphs representing sequence

diagrams for each participant during each scenario. We present these sequence diagrams in this

section. How to read sequence diagrams:

 Rectangular Zone: context type of explanation being viewed

 Circular Node: explanation type of the context type viewed

 Hexagonal Node: start (screen turned on) or stop (screen turned off)

 Edge: view transition from source page to destination page

o Thickness: duration source (previous) explanation was viewed

o Number: sequence step

o Shade: corresponds to sequence step

o Solid Arrow: user explicitly selected explanation

o Hollow Arrow: user selected ‘Back’

o Cyclic Loop: user selected ‘Refresh’

4
4

6
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

4
4

6
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

P# S2 S3 S4-if S4-situ

01

02

1
.1

 4
4

7

J.1

 P
A

R
T

IC
IP

A
N

T
 S

E
Q

U
E

N
C

E
 M

O
D

E
L

S 4
4

7

P# S2 S3 S4-if S4-situ

03

04

4
4

8
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

4
4

8
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

P# S2 S3 S4-if S4-situ

05

06

1
.1

 4
4

9

J.1

 P
A

R
T

IC
IP

A
N

T
 S

E
Q

U
E

N
C

E
 M

O
D

E
L

S 4
4

9

P# S2 S3 S4-if S4-situ

07

08

4
5

0
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

4
5

0
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

P# S2 S3 S4-if S4-situ

09

10

1
.1

 4
5

1

J.1

 P
A

R
T

IC
IP

A
N

T
 S

E
Q

U
E

N
C

E
 M

O
D

E
L

S 4
5

1

P# S2 S3 S4-if S4-situ

11

12

4
5

2
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

4
5

2
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

P# S2 S3 S4-if S4-situ

14

15

1
.1

 4
5

3

J.1

 P
A

R
T

IC
IP

A
N

T
 S

E
Q

U
E

N
C

E
 M

O
D

E
L

S 4
5

3

P# S2 S3 S4-if S4-situ

16

17

4
5

4
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

4
5

4
 A

P
P

E
N

D
IX

 J | L
A

Κ
SA

2
 U

SA
G

E
 D

E
T

A
IL

S

P# S2 S3 S4-if S4-situ

18

19

1
.1

 4
5

5

J.1

 P
A

R
T

IC
IP

A
N

T
 S

E
Q

U
E

N
C

E
 M

O
D

E
L

S 4
5

5

