

Institute

# Toolkit to Support Intelligibility in Context-Aware Applications

## Brian Y. Lim, Anind K. Dey

To help users better understand and trust context-aware applications, these applications should be intelligible; they should provide explanations about what they know, and their behavior. We have developed an Intelligibility Toolkit to support the implementation of 8 types of explanations for the 4 most popular decision models used in contextaware applications. For this demonstration, we present 4 applications showing how the Intelligibility Toolkit can be used to generate and provide explanations across decision models and application domains.



{ byl, anind } @cs.cmu.edu





#### **Toolkit Requirements**

- R1) Lower barrier to providing explanations
- R2) **Flexibility** of using explanations
- R3) Facilitate **appropriate** explanations automatically
- R4) Support **combining** explanations
- R5) **Extensible** across
  - **Explanation** types
  - Application (decision) models
  - Provision styles



Explainers support the automatic generation of 8 explanation types from supported decision explanation modeldependent, while 4 are not. Explainers take Queries and produce **Explanation Structs.** 



Diagram

Presenter

Text

Presenter



What If

(4) Presenters

Queries encapsulate different question types to put into Explainers. Some queries can take parameters to specify questions (e.g., asking Why Not about a target value).

Presenters allow explanations

to be rendered in different





## **Auto-Light Living Room**



This takes two factors (Presence and Brightness) to determine whether to turn the light on in a living room. The light would be off if Presence = 0 (i.e. no one in the room) or the detected brightness measure is less than 100 (out of 255).

- QueryPanel to receive user interactive queries
- RulesExplainer to generate explanations from rules
- StringPresenter to generate text output for the UI



#### **IM Response Prediction** W Decision Tree

This predicts when a buddy will respond to a message. It is trained on an existing dataset from [Avrahami et al. 2006] to build a decision tree. It takes desktop-based sensor inputs and makes response predictions (within/after 1 min).

- QueryParser to parse user text input as queries
- **DTreeExplainer** to generate explanations from the decision tree
- ShortestDReducer returns the shortest reason when multiple traces are computed (e.g., for Why Not and How To),
- FilteredCReducer to simplify the explanations by showing only more easily understood features
- ConsolePresenter to generate text output for the UI



Query

**AltQuery** 

WhatIfQuery

+ Alt Input values

### **Mobile Phone Accelerometry** Naive Bayes

This is a physical activity recognizer that uses the accelerometer on a Google Android mobile phone to infer whether the user is sitting, standing, or walking.

- QueryPanel to receive user interactive queries
- NaiveBayesExplainer to generate explanations from the naïve Bayes classifier
- No Reducer
- MotionPanelPresenter to represent the phone UI.



## **Home Activity Recognition** Hidden Markov Model

This uses the dataset from [Kasteren et al. 2008] about domestic activity, and train a HMM. The application takes 14 binary input sensors and infers which activity (out of 7) the user is performing. Explanations are presented by sensors and by time.

- QueryPanel to receive user interactive queries
- **HMMExplainer** to generate explanation from the HMM
- TimeCReducer to aggregate evidences of sensors across time SensorCReducer to aggregate time-step evidences of each
- FloorplanPresenter to render evidences as bubbles in a floorplan TimeBarPresenter to render time-step evidences of each sensor















