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Toolkit Requirements

R1) Lower barrier to providing

explanations

R2) Flexibility of using explanations
R3) Facilitate appropriate explanations

automatically

R4) Support combining explanations
R5) Extensible across

Explanation

* Application (decision) models

Provision styles
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Auto-Light Living Room

t

~ Rules

This takes two factors (Presence and Brightness) to determine
whether to turn the light on in a living room. The light would be off
if Presence = 0 (i.e. no one in the room) or the detected brightness

measure is less than 100 (out of 255).

e QueryPanel to receive user interactive queries

e RulesExplainer to gene

rate explanations from rules

e StringPresenter to generate text output for the Ul

Room Enactor

IM Response Prediction
% Decision Tree

This predicts when a buddy will respond to a message. It is trained
on an existing dataset from [Avrahami et al. 2006] to build a
decision tree. It takes desktop-based sensor inputs and makes
response predictions (within/after 1 min) .

® QueryParser to parse user text input as queries
e DTreeExplainer to generate explanations from the decision tree

e ShortestDReducer returns the shortest reason when multiple
traces are computed (e.g., for Why Not and How To),

® FilteredCReducer to simplify the explanations by showing only
more easily understood features

e ConsolePresenter to generate text output for the Ul

Response Enactor
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This is a physical activity recognizer that uses the accelerometer on
a Google Android mobile phone to infer whether the user is sitting,
standing, or walking.

e QueryPanel to receive user interactive queries

e NaiveBayesExplainer to generate explanations from the naive
Bayes classifier

e MotionPanelPresenter to represent the phone UlI.
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Home Activity Recognition
232 Hidden Markov Model

This uses the dataset from [Kasteren et al. 2008] about domestic
activity, and train a HMM. The application takes 14 binary
input sensors and infers which activity (out of 7) the user is
performing. Explanations are presented by sensors and by time.

e QueryPanel to receive user interactive queries
e HMMEXxplainer to generate explanation from the HMM
e TimeCReducer to aggregate evidences of sensors across time

SensorCReducer to aggregate time-step evidences of each
sensor

e FloorplanPresenter to render evidences as bubbles in a floorplan

TimeBarPresenter to render time-step evidences of each sensor
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Choose scenario: |1 Instructions

imautostatus [2010-08-28 02:26:26 PM]= | am likely to respond to you within 1 min
Alice [2010-08-28 02:26:33 PM]= im-certainty

imautostatus [2010-08-28 02:26:33 PM}= 80.3%

Alice [2010-08-28 02:26:35 PM]= im-why

imautostatus [2010-08-28 02:26:35 PM]=

1) Time since lastincoming message = 59.0sec
2)Whether your message window is in focus = out of focus
3y Mumber of inputs in the past 2 min ==69.0

Alice [2010-08-28 02:26:39 PM]= im-whynot after
imautostatus [2010-08-23 02:26:39 PM]=

1) Time since lastincoming message = 59.0sec

im-inputs
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